# American Academy of Actuaries <br> Health Insurance Rate Filing Task Force <br> Model Documentation 

(Version 5.2)

June 12, 2004

Reprinted with permission

## Table of Contents

General Notes. ..... 3
Disclaimer. ..... 4
Model User’s Guide ..... 5
AAA Rate Filing Model - Global.xls - Global Assumptions. ..... 9
AAA Rate Filing Model - Global.xls - Duration. ..... 18
AAA Rate Filing Model - Global.xls - Trend Scenarios. ..... 20
AAA Rate Filing Model - Current Market.xls - Global Assumptions ..... 21
AAA Rate Filing Model - Current Market.xls - Current Market Assumptions ..... 22
AAA Rate Filing Model - Current Market.xls - Current Market Summary. ..... 34
AAA Rate Filing Model - Current Market.xls - CM-1, CM-2, CM-3, CM-4, CM-5 ..... 48
AAA Rate Filing Model - Pre-Funding.xls - Global Assumptions ..... 68
AAA Rate Filing Model - Pre-Funding.xls - DBPR Assumptions. ..... 69
AAA Rate Filing Model - Pre-Funding.xls - Crude DBPR - Global. ..... 101
AAA Rate Filing Model - Pre-Funding.xls - DPBR-1, DBPR-2, DBPR-3, DPBR-4, DBPR-5. ..... 119
AAA Rate Filing Model - Individual Market Pool.xls - Global Assumptions. ..... 143
AAA Rate Filing Model - Individual Market Pool.xls - IMP Assumptions. ..... 144
AAA Rate Filing Model - Individual Market Pool.xls - IMP - Global. ..... 159
AAA Rate Filing Model - Individual Market Pool.xls - IMP-1, IMP-2, IMP-3, IMP-4, IMP-5. ..... 184
AAA Rate Filing Model - Interblock Subsidy.xls - Global Assumptions. ..... 206
AAA Rate Filing Model - Interblock Subsidy.xls - Current Market Assump 5 blocks. ..... 207
AAA Rate Filing Model - Interblock Subsidy.xls - Current Market Summary 5 blocks. ..... 221
AAA Rate Filing Model - Interblock Subsidy.xls - CM-1_TLR, CM-2_TLR, CM-3_TLR, CM-4_TLR, CM-5_TLR. ..... 240
AAA Rate Filing Model - Interblock Subsidy.xls - CM-1, CM-2, CM-3, CM-4, CM-5 ..... 253
AAA Rate Filing Model - Interblock Subsidy.xls - IBS Assumptions CY pooling. ..... 274
AAA Rate Filing Model - Interblock Subsidy.xls - IBS CY Pooling Summary ..... 288
AAA Rate Filing Model - Interblock Subsidy.xls - IBS-1P, IBS-2P, IBS-3P, IBS-4P, IBS-5P. ..... 291
AAA Rate Filing Model - Interblock Subsidy.xls - IBS Assump DUR pooling. ..... 292
AAA Rate Filing Model - Interblock Subsidy.xls - IBS DUR pooling Summary. ..... 307
AAA Rate Filing Model - Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D. ..... 356
AAA Rate Filing Model - Interblock Subsidy.xls - Rate Compression Assumptions. ..... 390
AAA Rate Filing Model - Interblock Subsidy.xls - IBS Compression Summary ..... 400
AAA Rate Filing Model - Interblock Subsidy.xls - IBS-1C, IBS-2C, IBS-3C, IBS-4C, IBS-5C. ..... 403
AAA Rate Filing Model - Interblock Subsidy.xls - Test Comparisons and To Do_ Changes ..... 425
AAA Rate Filing Model - Exhibits.xls. ..... 426

## General Notes

- This version of the documentation reflects the version of the model posted to the American Academy of Actuaries web site on May 19, 2004.
- Throughout the spreadsheets, "healthy" and "standard" are used interchangeably; in this documentation "standard" is used exclusively.
- Throughout the documentation, x represents duration, y represents issue year, and z represents projection year. The relationship among these three parameters is $\mathrm{x}=\mathrm{z}-\mathrm{y}+1$.
- Throughout the documentation, b represents block number.
- The documentation does not necessarily represent a given formula identically to how it is represented in the spreadsheet. Occasionally, the formula has been simplified or otherwise modified (e.g., by changing the order of calculations) to improve readability. However, in all cases the documentation and the spreadsheet produce mathematically identical results.
- average(), max(), $\min (), \operatorname{NPV}(), \operatorname{int}()$, and type() represent the Microsoft Excel average, maximum, minimum, net present value, integer, and type worksheet functions, respectively.
- When a parameter in a formula is obtained from a different tab of the spreadsheet, the specific tab and cells are indicated below the formula. When a parameter in a formula is obtained from the same tab, no indication is shown.
- Here is an example of how IF statements in the Excel spreadsheets are represented in the documentation, using the formula in Current Market Assumptions!D19 of the Current Market spreadsheet:

In the spreadsheet, the formula is: =IF(A19<=\$E\$14,+'Global Assumptions'!\$E\$43,0)
In the documentation, this is represented as:

```
= 的,
x}\leq\mathrm{ DDLP
0,
x > DDLP
```

The brace signifies that the formula contains an IF statement. The interpretation is as follows: If $\mathrm{x} \leq$ DDLP, then the formula returns the value $\mu_{x}$; if instead $x>$ DDLP, then the formula returns the value 0 . This is the standard way that these types of formulas are represented in mathematical textbooks.

Here, $x$ is equivalent to $A 19$, DDLP is equivalent to $\$ E \$ 14$, and $\mu_{x}$ is equivalent to $\$ E \$ 43$. It can now be seen that the Excel formula and the formula in the documentation are equivalent.

## Disclaimer

The actuarial model to which this document refers is for the exclusive use of the American Academy of Actuaries Health Insurance Rate Filing Task Force. It is intended solely as a tool to assist the task force in comparing potential financial outcomes of various scenarios and is not intended for any other use. The model should not be used for any other purpose nor by anyone other than the members of the task force. The assumptions in the model were chosen to represent general conditions; they are not necessarily appropriate to any particular company nor to any particular regulatory environment. The model complies with applicable Actuarial Standards of Practice.

## Model User’s Guide

The steps involved in using the model are as follows:

- Prepare to use the model.
o Ensure that all six spreadsheets are saved to the same directory or folder of your hard drive.
o It is advisable to have open only one of the spreadsheets Current Market.xls, Pre-Funding.xls, Individual Market Pool.xls, and Interblock Subsidy.xls at any time. Trying to open a second spreadsheet may result in a memory full error.
o Do not open multiple copies of Exhibits.xls, even if you save one with a different filename. This may cause errors with the links between spreadsheets.
o Ensure that you have Excel set up to calculate automatically. With any spreadsheet open, click on Tools on the menu bar, then click on Options and Calculation. If not already selected, click on Automatic, then click the OK button. If you do not do this, it will be necessary to recalculate manually (by hitting the F9 key) whenever "Calculate" appears at the bottom left of the screen.
o Throughout the model, any hardcoded number can be changed, but formulas must not be changed.
o Reasonable values should be used for all parameters. Using values that are mathematically impossible or actuarially unsound will invalidate the model output.
o After making any changes in the Global Assumptions tab of the Global spreadsheet or in the Rate Compression Assumptions tab of the Interblock subsidy spreadsheet, run the "Set Profit Difference \% to Zero" macro in Rate Compression Assumptions (see below).
- Set the general assumptions applicable to all models.
o Open the Global spreadsheet.
o Set the general assumptions applicable to all models in the Global Assumptions tab of the Global spreadsheet.
o Although it appears that any sales pattern can be used by block and projection year, certain formulas within the model assume that block 1 sales occur only in years 1-3, block 2 sales occur only in years 4-6, etc. Consequently, the values in cells D7:D11 of Global Assumptions must be set equal to zero. Using any other value will invalidate the model output.
o Save and close the Global spreadsheet.
- Set the assumptions applicable only to the Current Market model.
o Open the Current Market spreadsheet.
o Click on the "Yes" button to update links. If you do not do this, the changes that you made in Global will not be reflected in Current Market.
o Do not make any changes to the Global Assumptions tab of Current Market. These assumptions are obtained automatically from the Global Assumptions tab of the Global spreadsheet.


## Model User’s Guide

o Set the assumptions applicable only to the Current Market model in the Current Market Assumptions tab.
o Ensure that the value of the Expected Premium in Current Market Assumptions!E15 is reasonably close to the first-year Company New Business Rate in CM-1!W12. If necessary, manually change the value of the Expected Premium.
o Review the results in the Current Market-Summary tab.
o Save and close the Current Market spreadsheet.

- Set the assumptions applicable only to the Pre-Funding model.
o Open the Pre-Funding spreadsheet.
o Click on the "Yes" button to update links. If you do not do this, the changes that you made in Global will not be reflected in PreFunding.
o Do not make any changes to the Global Assumptions tab of Pre-Funding. These assumptions are obtained automatically from the Global Assumptions tab of the Global spreadsheet.
o Set the assumptions applicable only to the Pre-Funding model in the DBPR Assumptions tab.
o Ensure that the value of the Expected Premium in DBPR Assumptions!E10 is reasonably close to the first-year Company New Business Rate in DBPR-1!W12. If necessary, manually change the value of the Expected Premium.
o Review the results in the Crude DBPR - Global tab.
o Save and close the Pre-Funding spreadsheet.
- Set the assumptions applicable only to the Individual Market Pool model.
o Open the Individual Market Pool spreadsheet.
o Click on the "Yes" button to update links. If you do not do this, the changes that you made in Global will not be reflected in Individual Market Pool.
o Do not make any changes to the Global Assumptions tab of Individual Market Pool. These assumptions are obtained automatically from the Global Assumptions tab of the Global spreadsheet.
o Set the assumptions applicable only to the Individual Market Pool model in the IMP Assumptions tab.
o Ensure that the value of the Expected Premium in IMP Assumptions!R43 is reasonably close to the first-year Company New Business Rate in IMP-1!W12. If necessary, manually change the value of the Expected Premium.
o Review the results in the IMP - Global tab.
o Save and close the Individual Market Pool spreadsheet.


## Model User’s Guide

- Set the assumptions applicable only to the Interblock Subsidy model.
o Note that the Interblock Subsidy spreadsheet contains four models: (1) a copy of the Current Market model; (2) a calendar-year pooling model; (3) a durational pooling model; and (4) a rate compression model. Each has its own assumptions tab and summary tab.
o Open the Interblock Subsidy spreadsheet.
o Click on the "Enable Macros" button to allow the macro in the Rate Compression model to be executed.
o Click on the "Yes" button to update links. If you do not do this, the changes that you made in Global will not be reflected in Interblock Subsidy.
o Do not make any changes to the Global Assumptions tab of Interblock Subsidy. These assumptions are obtained automatically from the Global Assumptions tab of the Global spreadsheet.
o The Interblock Subsidy spreadsheet contains a copy of the Current Market model. This was used only for testing purposes when the Interblock Subsidy model was being developed. If desired, set the assumptions applicable only to the Current Market model in the Current Market Assump 5 blocks tab, again ensuring that all values are reasonable. The same assumptions as were used in the Current Market spreadsheet should be used here.
o Review the Current Market results in the Current Market Summary 5 blocks tab.
o Set the assumptions applicable only to calendar-year pooling in the IBS Assump CY pooling tab, ensuring that the Expected Premium at cell M15 is reasonable in relation to the first-year Company New Business Rate at IBS-1P!W12.
o Review the calendar-year pooling results in the IBS CY Pooling Summary tab.
o Set the assumptions applicable only to durational pooling in the IBS Assump DUR pooling tab, ensuring that the Expected Premium at cell M15 is reasonable in relation to the first-year Company New Business Rate at IBS-1D!W12.
o Review the durational pooling results in the IBS DUR pooling Summary tab.
o Set the assumptions applicable only to rate compression in the Rate Compression Assumptions tab.
o Click on the "Set Profit Difference \% to Zero" button to execute the macro, then wait until the macro has finished running (this may take over one minute). Note that if you did not click on the "Enable Macros" button when you opened the Interblock Subsidy spreadsheet, the macro will not execute and the rate compression results will not be valid. If you did not enable macros, save and close the spreadsheet and then re-open the spreadsheet, ensuring that you click on the "Enable Macros" button.
o Review the rate compression results in the IBS Compression Summary tab.
o Save and close the Interblock Subsidy spreadsheet.


## Model User’s Guide

- View comparative results and graphs in the Exhibits spreadsheet.
o Open the Exhibits spreadsheet.
o Click on the "Yes" button to update links. If you do not do this, the changes that you made in the other spreadsheets will not be reflected in Exhibits.
o Click on the Global Summary tab. This tab contains results of 24 key parameters from the Current Market, Individual Market Pool, and Pre-Funding models, as well as from the durational pooling and rate compression models found in the Interblock Subsidy spreadsheet. Numerical values are presented in columns B:F, and values as a percentage of the Current Market value for the given projection year are presented in columns G:J. A graph of each parameter is also presented. Clicking on File and then Print will print the results, with one page for each of the 24 parameters.
o Click on the Input tab. This tab presents the global assumptions and each model's model-specific assumptions.
o The last five tabs contain the results of each model. Except for the rate increases, these values were calculated in the spreadsheets Current Market, Pre-Funding, Individual Market Pool, and Interblock Subsidy.
o Save and close the Exhibits spreadsheet.


## Global.xls - Global Assumptions

| Parameter Name and <br> Symbol | Cell(s) | Description | Value(s) |
| :--- | :--- | :--- | :--- | :--- | :--- |

## Global.xls - Global Assumptions

| Parameter Name and <br> Symbol | Cell(s) | Description | Value(s) |  |
| :--- | :--- | :--- | :--- | :--- |
| Benefit Buydown <br> Trend <br> (BenTrend) | D20 | Annual claim trend due to tendency of <br> policyholders to reduce benefits to <br> partially offset rate increases. | $-1.15 \%$ | The subgroup decided this <br> was the simplest way to <br> reflect this impact. Alternate <br> methods were considered - <br> using larger discount factor or <br> adjusting per policy expenses. |
| Combined Trend <br> (Trend) | D21 | Annual claim trend due to the <br> combined effect of base trend, <br> leveraging trend and benefit changes | = [(1+BaseTrend) $)^{*}(1+$ LevTrend) <br> $*(1+$ BenTrend $)]-1$ |  |
| Aging Trend <br> (AgingTrend) | C22 | Annual claim trend rate due solely to <br> the impact of aging | $3 \%$ |  |
| Initial Reference <br> Premium <br> (InitRefPrem) | C24 | Initial market new business rate; based <br> on standard lives; excludes impact of <br> duration | $\$ 135$ PMPM | Premium roughly based on <br> $65 \%$ lifetime loss ratio for <br> Current Market model. |
| Premium Growth with <br> Age <br> (PremGrowthAge) | C25 | Annual premium rate increase due <br> solely to the impact of aging | $3 \%$ | Assumed to be equal to Aging <br> Trend. |
| Discount at <br> Introduction <br> (Disc@Intro) | D26 | Percentage by which company’s new <br> business rate is less than Reference <br> Premium in projection year 1 (i.e., at <br> product introduction) | $0 \%$ |  |

## Global.xls - Global Assumptions

| Parameter Name and <br> Symbol | Cell(s) | Description | Value(s) |
| :--- | :--- | :--- | :--- | :--- | :--- |

## Global.xls - Global Assumptions

| Parameter Name and Symbol | Cell(s) | Description | Value(s) |  | Source and Rationale |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Standard Lives Lapse <br> Rate Adjustment due to Mix of Sales (LapseAdjSale ${ }_{\text {st }}$ ) | D38 | Change in lapse rate of standard lives due to impact of new business rates exceeding reference premiums, which affects the mix of purchasers expecting to need coverage for the short term rather than the long term | 7\% |  | Example: If in a given projection year for a given issue year the company's new business rate exceeds the reference rate by $10 \%$, standard life lapses will be $0.7 \%$ greater than they otherwise would have been. |
| Maximum Standard Lives Lapse Rate ( $\mathrm{q}_{\max (\mathrm{st}}$ ) | D39 | Maximum annual lapse rate of standard lives | 80\% |  |  |
| Minimum Standard Lives Lapse Rate ( $\mathrm{q}_{\text {min }(\mathrm{st})}$ ) | D40 | Minimum annual lapse rate of standard lives | 15\% |  |  |
| Probability of Becoming Impaired ( $\mu_{\mathrm{x}}$ ) | E43:E47 | Annual rate at which standard lives become impaired | Year 1: <br> Year 2: <br> Year 3: <br> Year 4: <br> Years 5-30 | $\begin{aligned} & 0.40 \% \\ & 0.80 \% \\ & 1.20 \% \\ & 1.60 \% \\ & 1.80 \% \end{aligned}$ |  |
| Initial Reference Claim Cost for Standard Lives (InitRefClaims ${ }_{\mathrm{st}}$ ) | D49 | Claim cost for standard lives in projection year 1 | \$90 PMPM |  |  |

## Global.xls - Global Assumptions

| Parameter Name and Symbol | Cell(s) | Description | Value(s) | Source and Rationale |
| :---: | :---: | :---: | :---: | :---: |
| Morbidity Adjustment due to Mix of Sales (MorbAdj ${ }_{\text {st }}$ ) | D51 | Change in claim cost for standard lives due to impact of the company's new business rates exceeding reference premiums, which is assumed to result in slightly older, less healthy purchasers | 25\% | Example: If in a given projection year the company's new business rate exceeds the reference premium by $4 \%$, standard life claim costs will be $1 \%$ greater than they otherwise would have been. |
| Base Impaired Lives Lapse Rate (Baseq ${ }_{i m}$ ) | C54 | Annual base lapse rate for impaired lives | 12\% |  |
| Base Impaired Lives Lapse Rate Used in Pricing (Baseq $\left.{ }_{\mathrm{im}(\mathrm{rr})}\right)$ | D54 | Pricing assumption of annual base lapse rate for impaired lives | 12\% |  |
| Impaired Lives Lapse Rate Adjustment due to Trend (LapseAdjTrend $_{\mathrm{im}}$ ) | D56 | Change in lapse rate of impaired lives due to a premium rate increase in excess of claim trend | 25\% | See example under Standard Lives Lapse Rate Adjustment due to Trend, above. |
| Maximum Impaired Lives Lapse Rate ( $\mathrm{q}_{\max (\mathrm{im})}$ ) | D57 | Maximum annual lapse rate of impaired lives | 50\% |  |
| Minimum Impaired Lives Lapse Rate $\left(\mathrm{q}_{\min (\mathrm{im})}\right)$ | D58 | Minimum annual lapse rate of impaired lives | 5\% |  |

## Global.xls - Global Assumptions

| Parameter Name and Symbol | Cell(s) | Description | Value(s) | Source and Rationale |
| :---: | :---: | :---: | :---: | :---: |
| Initial Reference Claim Cost for Impaired Lives (InitRefClaims ${ }_{i m}$ ) | D60 | Claim cost for impaired lives in projection year 1 | \$375 PMPM |  |
| Interest <br> (int) | B63 | Annual interest rate; used in present value calculations | 5\% |  |
| Inflation (Inflation) | B64 | Annual inflation rate; used in per policy expense calculations | 4\% |  |
| Per Policy Expense Rate (Exppol) | B70:B74 | Policy expenses PMPM | Year 1: $\$ 28.00$ <br> Year 2: 3.50 <br> Year 3: 3.50 <br> Year 4: 3.50 <br> Years 5-30: 3.50 |  |
| Percentage-of-Claims <br> Expense Rate <br> (Exp\%c) | C70:C74 | Expense rate as a percentage of claims | Year 1: $7.0 \%$ <br> Year 2: $7.0 \%$ <br> Year 3: $6.5 \%$ <br> Year 4: $6.0 \%$ <br> Years 5-30: $5.0 \%$ |  |
| Base Commission Rate $\left(\mathrm{Comm}_{\mathrm{B}}\right)$ | D70:D74 | Commission rate as a percentage of base premium (i.e., premium at time of initial sale) | Year 1: $30.0 \%$ <br> Year 2: $12.0 \%$ <br> Year 3: $12.0 \%$ <br> Year 4: $12.0 \%$ <br> Years 5-30: $7.5 \%$ |  |

## Global.xls - Global Assumptions

| Parameter Name and Symbol | Cell(s) | Description | Value(s) | Source and Rationale |
| :---: | :---: | :---: | :---: | :---: |
| Renewal Commission Rate (Comm ${ }_{\text {R }}$ ) | E70:E74 | Commission rate as a percentage of renewal rate increase | Year 1: $0.0 \%$ <br> Year 2: $0.0 \%$ <br> Year 3: $0.0 \%$ <br> Year 4: $0.0 \%$ <br> Years 5-30: $0.0 \%$ | Common practice is to pay commission on base amounts only, not on renewal increases. |
| Other Premium-Related Expense Rate (Expoth\%p) | F70:F74 | Expense rate as a percentage of premium | Year 1: $7.5 \%$ <br> Year 2: $7.5 \%$ <br> Year 3: $7.5 \%$ <br> Year 4: $7.5 \%$ <br> Years 5-30: $7.5 \%$ | Includes $2.5 \%$ premium tax and $5.0 \%$ overhead. |
| Duration Factors (DF) | B77:B81 | Factor applied to claim cost to reflect the impact of duration | Year 1: 0.65 <br> Year 2: 0.80 <br> Year 3: 0.90 <br> Year 4: 1.00 <br> Years 5-30: 1.00 |  |
| Allocated Capital as <br> Percentage of Premiums (RBC\%) | D83 | Allocated capital as a percentage of premium | 24.00\% |  |
| Opportunity Cost of Capital <br> (OCC\%) | D84 | Spread representing lost earnings on allocated capital | 5.00\% |  |

## Global.xls - Global Assumptions

| Parameter Name and Symbol | Cell(s) | Description | Value(s) | Source and Rationale |
| :---: | :---: | :---: | :---: | :---: |
| Regulatory Dampening of Rate Increases (RegDamp) | D90:D99 | Factor applied to rate increases to reflect the impact of the regulatory approval process | Requested Rate <br> Increase Range Dampening <br> Factor <br> $0 \%$ to $10 \%$ : $100.0 \%$ <br> $10 \%$ to $20 \%$ : $95.0 \%$ <br> 20\% to $30 \%$ : $85.0 \%$ <br> $30 \%$ to $40 \%$ : $80.0 \%$ <br> $40 \%$ to $50 \%$ : $75.0 \%$ <br> $50 \%$ to $60 \%$ : $70.0 \%$ <br> $60 \%$ to $70 \%$ : $65.0 \%$ <br> $70 \%$ to $80 \%$ : $60.0 \%$ <br> $80 \%$ to $90 \%$ : $55.0 \%$ <br> $90 \%$ or greater: $50.0 \%$ | For a requested rate increase at the boundary of two ranges, the lower of the two dampening factors is used. For example, for a requested rate increase of exactly $20 \%$, the dampening factor used is $85 \%$ rather than $95 \%$. <br> Note that the calculations in cells F90:F99 are extraneous. |
| Maximum Rate Increase (MaxRateInc) | D100 | Maximum rate increase that will receive regulatory approval | 50\% |  |
| Trend Scenario Number (TrendScen) | C102 | Parameter to indicate which of the ten predefined trend patterns is to be used | 1 | Scenario 1 is the default scenario and reflects a flat $12 \%$ annual trend. |
| Trend Scenario Name | B105 | Name of the selected trend scenario | From the appropriate cell in Trend Scenarios!B8:K8 |  |

## Global.xls - Global Assumptions

| Parameter Name and Symbol | Cell(s) | Description | Value(s) | Source and Rationale |
| :---: | :---: | :---: | :---: | :---: |
| Actual Trend (ActTrend ${ }_{z}$ ) | $\begin{aligned} & \text { B106: } \\ & \text { B135 } \end{aligned}$ | Actual trend by projection year, normalized to the value of Combined Trend from cell D21 | $=\text { Trend } / 12 \% \text { * ScenTrend }{ }_{z}$ <br> ScenTrend $_{\mathrm{z}}$ is from the appropriate cell of Trend Scenarios!B9:K38 | Several different trend patterns are shown in the Trend Scenarios tab. These were developed assuming a base trend of $12 \%$. If it is determined that the base trend assumption should be changed to something other than $12 \%$, these scenario trend values will be rescaled accordingly by this formula. |
| Year of Introduction (Intro $\mathrm{Yr}_{\mathrm{b}}$ ) | Q7:Q11 | First year of issue for the given block | Block 1: 1 <br> Block 2: 4 <br> Block 3: 7 <br> Block 4: 10 <br> Block 5: 13 |  |
| Baseline New Sales (BaseSalesx) | O15:044 | Annual baseline new sales rate | For projection years 1-20, from the appropriate cell of D4:D11. <br> For projection years 21-30, hardcoded as 0 . |  |
| Base Sales by Projection Year by Block <br> (BaseSales ${ }_{z, \mathrm{~b}}$ ) | P15:T44 | Annual baseline new sales rate in a given projection year for a given block | $\begin{aligned} 0, & \mathrm{z} \end{aligned}=\text { IntroYr }_{\mathrm{b}}$ |  |

## Global.xls - Duration

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| B7: B36 | Base Lapse Rate for Standard Lives ( Baseq $_{\text {(st }}$ ) | From the appropriate cell of Global Assumptions!D29:D33 | In cells B7:M36, rows represent durations $\mathrm{x}=$ $1,2,3, \ldots, 30$. |
| C7:C36 | Base Lapse Rate for Impaired Lives <br> ( Baseq $_{\text {(im }}$ ) | From Global Assumptions!C54 |  |
| D7:D36 | Rate of Impairment $\left(\mu_{\mathrm{x}}\right)$ | From the appropriate cell of Global Assumptions!E43:E47 |  |
| E7:E36 | Number of Standard Lives $\left(l_{x(s t)}\right)$ | $\begin{array}{\|lr} \hline= & 10,000, \end{array} \begin{array}{r} x=1 \\ \\ l_{\text {x-1 (st) }} *\left(1-\mu_{\mathrm{x}-1}\right) *\left(1-\text { Baseq }_{\mathrm{x}-1(\mathrm{st})}\right), \end{array} \quad \mathrm{x}=2,3,4, \ldots, 30$ <br> $\mu_{\mathrm{x}-1}$ is from the appropriate cell of Global Assumptions!E43:E47 |  |
| F7:F36 | Number of Impaired Lives $\left(l_{x(i m)}\right)$ | $=\begin{array}{lr} 0, & x=1 \\ {\left[l_{\mathrm{x}-1(\mathrm{im})} *\left(1-\text { Baseq }_{\mathrm{x}-1(\mathrm{im})}\right)\right]+\left(\mathrm{l}_{\mathrm{x}-1(\mathrm{st})} * \mu_{\mathrm{x}-1}\right),} & \mathrm{x}=2,3,4, \ldots, 30 \end{array}$ |  |
| G7:G36 | Total Number of Lives $\left(l_{x}\right)$ | $=l_{\text {(sts) }}+l_{\text {x(im) }}$ |  |
| H7:H36 | Total Base Lapse Rate | $=1-\left(l_{x+1} / l_{x}\right)$ |  |
| I7:I36 | Duration Factors ( $\mathrm{DF}_{\mathrm{x}}$ ) | From the appropriate cell of Global Assumptions!B77:B81 |  |

## Global.xls - Duration

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| J7:J36 | Annual Claim Costs of Standard Lives ( $\mathrm{C}_{\mathrm{x}(\mathrm{st})}$ ) | $=\text { InitRefClaims }_{\text {st }} * \text { DF }_{x}$ <br> InitRefClaims $_{\text {st }}$ is from Global Assumptions!D49 |  |
| K7:K36 | Annual Claim Costs of Impaired Lives $\left(\mathrm{C}_{\mathrm{x}(\mathrm{im})}\right)$ | $=\text { InitRefClaims }_{\mathrm{im}}$ <br> InitRefClaims $_{\text {im }}$ from Global Assumptions!D60 |  |
| L7:L36 | Weighted Average Annual Claim Costs ( $\mathrm{C}_{\mathrm{x}(\text { (avg) })}$ | $=\left[\left(\mathrm{l}_{\mathrm{x}(\mathrm{st})} * \mathrm{C}_{\mathrm{x}(\mathrm{st})}\right)+\left(\mathrm{l}_{\mathrm{x}(\mathrm{im})} * \mathrm{C}_{\mathrm{x}(\mathrm{im})}\right)\right] / \mathrm{l}_{\mathrm{x}}$ |  |
| M7:M36 | Relative Claim Cost $\left(\mathrm{C}_{\mathrm{x}(\mathrm{rel})}\right)$ | $=\mathrm{C}_{\mathrm{x}(\mathrm{avg})} / \text { InitRefClaims }_{\mathrm{st}}$ <br> InitRefClaims ${ }_{\text {st }}$ is from Global Assumptions!D49 | Shows combined impact of duration and lapsation. |
| 07:O36 | Relative Claim Cost as a Percentage of First-Year Relative Claim Cost | $=\mathrm{C}_{\mathrm{x} \text { (rel) }} / \mathrm{C}_{1 \text { (rel) }}$ |  |
| P7:P36 | Relative Claim Cost as a Percentage of Third-Year Relative Claim Cost | $=\mathrm{C}_{\mathrm{x} \text { (rel) }} / \mathrm{C}_{3 \text { (rel) }}$ |  |

## Global.xls - Trend Scenarios

| Year | Medium | $\underline{\text { High }}$ | $\underline{\text { Low }}$ | $\underline{\text { Jump }}$ | $\underline{\text { Drop }}$ | $\underline{\text { Peak }}$ |  | Valley |  | CyclicA |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

## Current Market.xls - Global Assumptions

The Global Assumptions tab within the Current Markets spreadsheet is an exact copy of the analogous tab in the Global spreadsheet. The field names, cell numbers, and values are identical. If a change is made in the Global Assumptions tab of the Global spreadsheet, the Global Assumptions tabs of all other spreadsheets in the model will be updated automatically the next time they are opened.

## Current Market.xls - Current Market Assumptions

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| E4 | Target Lifetime Loss Ratio (TargetLR) | = 65.0\% |  | Hardcoded value |
| E5 | Maximum Allowable Loss Ratio <br> (MaxLR) | = 200.0\% |  | Hardcoded value |
| J6:J10 | Durational Rate Increase ( $\mathrm{DRI}_{\mathrm{x}}$ ) | Renewal 1 ( $\mathrm{x}=2$ ): <br> Renewal 2 ( $\mathrm{x}=3$ ): <br> Renewal 3 ( $x=4$ ): <br> Renewal 4 ( $x=5$ ): <br> Renewals 5-29 ( $x=6,7,8, \ldots, 30$ ) | $\begin{aligned} & 5 \% \\ & 5 \% \\ & 5 \% \\ & 5 \% \\ & 5 \% \end{aligned}$ | Hardcoded values; represents the additional rate increase needed each year due to anticipated wearoff of underwriting |
| D7 | Flag to Include Trend (TrendFlag) | $=1$ |  | Hardcoded value; value of 1 means to include trend in projections, value of 0 means to exclude trend. |
| D11 | Initial Reference Claim Cost for Standard Lives (InitRefClaims ${ }_{\mathrm{st}}$ ) | From Global Assumptions!D49 |  | Best estimate of starting claim costs for standard lives |

## Current Market.xls - Current Market Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| F11 | Pricing Assumption of Initial Reference Claim Cost for Standard Lives (InitRefClaims ${ }_{\text {st(prr) }}$ ) | = InitRefClaims ${ }_{\text {st }}$ | Standard lives starting claim costs used in initial pricing; the model provides the flexibility to adjust the baseline claims for use in pricing, but the model currently does not make any such adjustment. |
| D12 | Initial Reference Claim Cost for Impaired Lives (InitRefClaims ${ }_{i m}$ ) | From Global Assumptions!D60 | Best estimate of starting claim costs for impaired lives |
| F12 | Pricing Assumption of Initial Reference Claim Cost for Impaired Lives (InitRefClaims ${ }_{\mathrm{im}(\mathrm{pr})}$ ) | $=$ InitRefClaims $_{\text {im }}$ | Impaired lives starting claim costs used in initial pricing; the model provides the flexibility to adjust the baseline claims for use in pricing, but the model currently does not make any such adjustment. |

## Current Market.xls - Current Market Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| E14 | Durational Deterioration Limitation Period (DDLP) | $=5$ | Hardcoded value; period during which the probability of a standard life becoming impaired is assumed to be greater than zero for pricing purposes |
| E15 | Expected Premium Rate (ExpPrem) | = \$126 | Hardcoded value; this represents the company's targeted new business rate. |
| B19:B48 | Standard Lives Base Lapse Rates Used in Pricing $\left(\mathrm{q}_{\mathrm{x}(\mathrm{st}, \mathrm{pr})}\right)$ | $=\max \left\{\mathrm{q}_{\min (\mathrm{st})}, \min \left[\mathrm{q}_{\max (\mathrm{st})}\right.\right.$, Baseq $_{\mathrm{x}(\mathrm{st})}+\left(\left(\left(\mathrm{PAF}_{\mathrm{x}+1} / \mathrm{PAF}_{\mathrm{x}} *\right.\right.\right.$ AccumDRI $_{\mathrm{x}+1}$ <br> $/$ AccumDRI $\left.\left._{\mathrm{x}}\right)-1\right)$ * LapseAdjTrend $\left.{ }_{\mathrm{st}}\right)+\left(\left(\right.\right.$ AccumDRI $\left._{\mathrm{x}+1}-1\right)$ * <br> LapseAdjMkt ${ }_{\mathrm{st}}$ ]\} <br> $\mathrm{q}_{\text {min(st) }}$ is from Global Assumptions!D40 <br> $\mathrm{q}_{\max (\mathrm{st})}$ is from Global Assumptions!D39 <br> Baseq $_{\text {(st, pr) }}$ is from the appropriate cell of Global Assumptions!E29:E33 <br> LapseAdjTrend $_{\text {st }}$ is from Global Assumptions!D36 <br> LapseAdjMkt $_{\text {st }}$ is from Global Assumptions!D37 | Baseline standard lives lapse rates adjusted to reflect higher anticipated lapses due to rate increases exceeding claim trend and renewal rates exceeding the market new business rate |

## Current Market.xls - Current Market Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| C19:C48 | Impaired Lives Base Lapse Rates Used in Pricing $\left(\mathrm{q}_{\mathrm{x}(\mathrm{im}, \mathrm{pr})}\right)$ |  | Baseline impaired lives lapse rates adjusted to reflect higher anticipated lapses due to rate increases exceeding claim trend during durational deterioration limitation period; beyond DDLP, impaired lives lapse rates are equal to standard lives lapse rates. |
| D19:D48 | Probability of Becoming Impaired Used in Pricing ( $\left.\mu_{\text {(pr) })}\right)$ | $\begin{array}{lll} \hline=\quad \mu_{\mathrm{x}}, & \mathrm{x} \leq \text { DDLP } \\ 0, & \mathrm{x}>\text { DDLP } \end{array}$ <br> $\mu_{\mathrm{x}}$ is from the appropriate cell of Global Assumptions!E43:E47 |  |
| E19:E48 | Number of Standard Lives $\left(\mathrm{l}_{\mathrm{x}(\mathrm{st})}\right)$ | $\begin{array}{lrr} \hline= & 1, & x=1 \\ l_{\text {x-1(st) }} *\left(1-\mu_{\mathrm{x}-1(\mathrm{pr})}\right) *\left(1-\mathrm{q}_{\mathrm{x}-1(\mathrm{st}, \mathrm{pr})}\right), & \mathrm{x}=2,3,4, \ldots, 30 \end{array}$ | The values in columns E, F, and G represent proportions of the number of first-year standard lives. |
| F19:F48 | Number of Impaired Lives $\left(l_{x(i m)}\right)$ | $\begin{array}{rlr} = & 0, & x=1 \\ & {\left[l_{\text {l-1 (im) }} *\left(1-\mathrm{q}_{\mathrm{x}-1(\mathrm{im}, \mathrm{pr})}\right)\right]+\left(\mathrm{l}_{\mathrm{x}-1(\mathrm{st})} * \mu_{\mathrm{x}-1(\mathrm{pr})}\right),} & \mathrm{x}=2,3,4, \ldots, 30 \end{array}$ |  |

## Current Market.xls - Current Market Assumptions

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| G19:G48 | Number of Total Lives $\left(l_{x}\right)$ | $=l_{\text {x(st) }}+\mathrm{l}_{\mathrm{x}(\mathrm{mm})}$ |  |  |
| H19:H48 | Accumulated Trend (AccumTrend ${ }^{\text {x }}$ ) | $=\quad 1,$ <br> Trend is from Global Assumptions!D21 | $\begin{array}{r} x=1 \\ x=2,3,4, \ldots, 30 \end{array}$ |  |
| I19:I48 | Discount Factor $\left(v_{x}\right)$ | $\begin{aligned} & =1, \\ & \mathrm{v}_{\mathrm{x}-1} /(1+\mathrm{int}), \end{aligned}$ | $\begin{array}{r} x=1 \\ x=2,3,4, \ldots, 30 \end{array}$ |  |
| J19:J48 | Premium Age Factor (PAF) | $\begin{aligned} = & 1, \\ & \operatorname{PAF}_{x-1} *(1+\text { PremGrowthAge }) \end{aligned}$ <br> PremGrowthAge is from Global Assumptions!C25 | $\begin{array}{r} x=1 \\ x=2,3,4, \ldots, 30 \end{array}$ | A $31^{\text {st }}$-year value is needed for the calculation of $\mathrm{q}_{30(\mathrm{st}, \mathrm{pr})}$. |

## Current Market.xls - Current Market Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| K19:K48 | Pricing Claims $\left(\mathrm{C}_{\mathrm{x}(\mathrm{pr})}\right)$ | InitRefPrem is from Global Assumptions!C24 <br> MorbAdj ${ }_{s t}$ is from Global Assumptions!D51 <br> $\mathrm{DF}_{\mathrm{x}}$ is from the appropriate cell of CM-1!D12:D41 | Standard lives’ claims are adjusted each year for morbidity, duration (within the DDLP), aging, and trend. <br> Impaired lives’ claims are adjusted each year for aging and trend. |
| L19:L48 | Annual Durational Rate Increase ( $\mathrm{ADRI}_{\mathrm{x}}$ ) | $\begin{array}{lr} =0, & x=1 \\ \text { DRI }_{x}, & x=2,3,4, \ldots, 30 \end{array}$ |  |
| M19:M49 | Accumulated Durational Rate Increase Factor (AccumDRI ${ }_{x}$ ) | $\begin{array}{lrr} \hline= & 1, & x=1 \\ & \text { AccumDRI }_{x-1} *\left(1+\text { ADRI }_{x}\right), & x=2,3,4, \ldots, 31 \end{array}$ | A $31^{\text {st }}$-year value is needed for the calculation of $\mathrm{q}_{30(\mathrm{st}, \mathrm{pr})}$. |
| N19:N48 | Pricing Premium $\left(\mathrm{P}_{\mathrm{x}(\mathrm{pr})}\right)$ | $\begin{aligned} & \mathrm{l}_{1} * \sum_{\mathrm{i}=1}^{30}\left(\mathrm{C}_{\mathrm{i}(\mathrm{pr})} * \mathrm{v}_{\mathrm{i}}\right) / \sum_{\mathrm{j}=1}^{30}\left(\mathrm{l}_{\mathrm{j}} * \text { PAF }_{\mathrm{j}} * \text { AccumTrend }_{\mathrm{j}} * \mathrm{v}_{\mathrm{j}} * \text { AccumDRI }_{\mathrm{j}}\right) \\ &=\quad \mathrm{TargetLR}, \\ & \\ & \\ & \mathrm{P}_{1(\mathrm{pr})} / \mathrm{l}_{1} * \text { PAF }_{\mathrm{x}} * \mathrm{l}_{\mathrm{x}} * \text { AccumTrend }_{\mathrm{x}} * \text { ADRI }_{\mathrm{x}} / \mathrm{ADRI}_{1}, \\ & \mathrm{x}=2,3,4, \ldots, 30 \end{aligned}$ |  |

## Current Market.xls - Current Market Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| O19:048 | Pricing Loss Ratio $\left(\mathrm{LR}_{\mathrm{x}(\mathrm{pr})}\right)$ | $=\mathrm{C}_{\mathrm{x}(\mathrm{pr})} / \mathrm{P}_{\mathrm{x}(\mathrm{pr})}$ |  |
| P19:P48 | Pricing Expenses $\left(\operatorname{Exp}_{\mathrm{x}(\mathrm{pr})}\right)$ | $\begin{aligned} =\mathrm{l}_{\mathrm{x}} * & \operatorname{Exp}_{\mathrm{Pol}(\mathrm{x})} *\left(1+{\operatorname{Inflation})^{\mathrm{x}-1}}\right. \\ & +\operatorname{Exp}_{\% \mathrm{C}(\mathrm{x})} * \mathrm{C}_{\mathrm{x}(\mathrm{pr})} \\ & +\operatorname{Comm}_{\mathrm{B}(\mathrm{x})} * \mathrm{P}_{1(\mathrm{pr})} / \mathrm{l}_{1} * \mathrm{l}_{\mathrm{x}} \\ & +\operatorname{Comm}_{\mathrm{R}(\mathrm{x})} *\left[\mathrm{P}_{\mathrm{x}(\mathrm{pr})}-\left(\mathrm{P}_{1(\mathrm{pr})} / \mathrm{l}_{1} * \mathrm{l}_{\mathrm{x}}\right)\right] \\ & +\operatorname{Expoth} \% \mathrm{P}(\mathrm{x}) * \mathrm{P}_{\mathrm{x}(\mathrm{pr})} \end{aligned}$ <br> $\operatorname{Exp}_{\mathrm{Pol}(\mathrm{x})}$ is from the appropriate cell of CM-1!E12:E41 Inflation is from Global Assumptions!B64 <br> Exp\%C(x) is from the appropriate cell of CM-1!F12:F41 Comm $_{\mathrm{B}(\mathrm{X})}$ is from the appropriate cell of CM-1!G12:G41 Comm $_{\mathrm{R}(\mathrm{x})}$ is from the appropriate cell of $\mathrm{CM}-1$ ! $\mathrm{H} 12: \mathrm{H} 41$ Expoth\% ${ }_{\mathrm{P}(\mathrm{x})}$ is from the appropriate cell of $\mathrm{CM}-1$ !I12:I41 |  |
| Q19:Q48 | Pricing Expense as a Percentage of Pricing Premium | $=\operatorname{Exp}_{\mathrm{x}(\mathrm{pr})} / \mathrm{P}_{\mathrm{x}(\mathrm{pr})}$ |  |
| R19:R48 | Pricing Operating Gain $\left(\right.$ Gain $\left._{\text {(pr) }}\right)$ | $=\mathrm{P}_{\mathrm{x}(\mathrm{pr})}-\mathrm{C}_{\mathrm{x}(\mathrm{pr})}-\operatorname{Exp}_{\mathrm{x}(\mathrm{pr})}$ |  |

## Current Market.xls - Current Market Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| S19:S48 | Pricing Gain as a Percentage of Pricing Premium | $=\operatorname{Gain}_{\mathrm{x}(\mathrm{pr})} / \mathrm{P}_{\mathrm{x}(\mathrm{pr})}$ |  |
| K50 | Simple Sum of Pricing Claims (SumClaims) | $=\sum_{x=1}^{30} C_{x(p r)}$ |  |
| N50 | Simple Sum of Pricing Premiums (SumPrem) | $=\sum_{x=1}^{30} P_{x(\mathrm{pr})}$ |  |
| O50 | Pricing Loss Ratio, Using Simple Sums | = SumClaims / SumPrem |  |
| P50 | Simple Sum of Pricing <br> Expenses <br> (SumExp) | $=\sum_{\mathrm{x}=1}^{30} \operatorname{Exp}_{\mathrm{x}(\mathrm{pr})}$ |  |
| Q50 | Pricing Expense Ratio, Using Simple Sums | = SumExp / SumPrem |  |
| R50 | Simple Sum of Pricing Gains <br> (SumGain) | $=\sum_{x=1}^{30} \operatorname{Gain}_{x(\mathrm{pr})}$ |  |

## Current Market.xls - Current Market Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| S50 | Pricing Gain Ratio, Using Simple Sums | = SumGain / SumPrem |  |
| K51 | Present Value of Pricing Claims over 10 Years (PVClaims ${ }_{10}$ ) | $=\mathrm{NPV}_{\text {int }}\left(\mathrm{C}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}, \quad$ where NPV is taken over $\mathrm{x}=1,2,3, \ldots .10$ |  |
| N51 | Present Value of Pricing Premiums over 10 Years (PVPrem ${ }_{10}$ ) | $=N P V_{\text {int }}\left(\mathrm{P}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}, \quad$ where NPV is taken over $\mathrm{x}=1,2,3, \ldots .10$ |  |
| O51 | Pricing Loss Ratio, Using 10-Year NPVs | $=$ PVClaims $_{10} /$ PVPrem $_{10}$ |  |
| P51 | Present Value of Pricing Expenses over 10 Years ( PVExp $_{10}$ ) | $=N P V_{\text {int }}\left(\operatorname{Exp}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}$, where NPV is taken over $\mathrm{x}=1,2,3, \ldots .10$ |  |
| Q51 | Pricing Expense Ratio, Using 10-Year NPVs | $=$ PVExp $_{10} /$ PVPrem $_{10}$ |  |
| R51 | Present Value of Pricing Gains over 10 Years (PVGain ${ }_{10}$ ) | $=\mathrm{NPV}_{\mathrm{int}}\left(\operatorname{Gain}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}$ <br> where NPV is taken over $\mathrm{x}=1,2,3, \ldots .10$ |  |
| S51 | Pricing Gain Ratio, Using 10-Year NPVs | $=$ PVGain $_{10} /$ PVPrem $_{10}$ |  |

## Current Market.xls - Current Market Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| K52 | Present Value of Pricing Claims over 30 Years (PVClaims ${ }_{30}$ ) | $=\operatorname{NPV}_{\text {int }}\left(\mathrm{C}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}, \quad$ where NPV is taken over $\mathrm{x}=1,2,3, \ldots .30$ |  |
| N52 | Present Value of Pricing Premiums over 30 Years (PVPrem 30 ) | $=N P V_{\text {int }}\left(\mathrm{P}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}, \quad$ where NPV is taken over $\mathrm{x}=1,2,3, \ldots .30$ |  |
| O52 | Pricing Loss Ratio, Using 30-Year NPVs | $=$ PVClaims $_{30} /$ PVPrem $_{30}$ |  |
| P52 | Present Value of Pricing Expenses over 30 Years ( $\mathrm{PVExp}_{30}$ ) | $=N P V_{\text {int }}\left(\operatorname{Exp}_{x(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}$, where NPV is taken over $\mathrm{x}=1,2,3, \ldots .30$ |  |
| Q52 | Pricing Expense Ratio, Using 30-Year NPVs | $=$ PVExp $_{30} /$ PVPrem $_{30}$ |  |
| R52 | Present Value of Gains over 30 Years <br> $\left(\right.$ PVGain $\left._{30}\right)$ | $=\operatorname{NPV}_{\mathrm{int}}\left(\operatorname{Gain}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}},$ <br> where NPV is taken over $\mathrm{x}=1,2,3, \ldots .30$ |  |
| S52 | Pricing Gain Ratio, Using 30-Year NPVs | $=$ PVGain $_{30} /$ PVPrem $_{30}$ |  |

## Current Market.xls - Current Market Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| K53 | PV of Pricing Claims as a Percentage of PV of Pricing Premium | $=$ PVClaims $_{30} /$ PVPrem $_{30}$ | Model calculations produce a stream of premiums such that this is equal to the target lifetime loss ratio. |
| N53 | PV of Pricing Premium as a Percentage of PV of Pricing Premium | $=$ PVPrem $_{30} /$ PVPrem $_{30}$ | Identically equal to 1.000 . |
| P53 | PV of Pricing Expenses as a Percentage of PV of Pricing Premium | $=$ PVExp $_{30} /$ PVPrem $_{30}$ |  |
| R53 | PV of Pricing Gain as a Percentage of PV of Pricing Premium | $=$ PVGain $_{30} /$ PVPrem $_{30}$ |  |
| G54 | Interest <br> (int) | From Global Assumptions!B63 |  |
| V19:Z48 | Composite Expected Loss Ratio by Block by Projection Year (ExpectedLR ${ }_{z, b}$ ) | $=$ the $\mathrm{z}^{\text {th }}$ value in the array of composite loss ratios for the $\mathrm{b}^{\text {th }}$ block, where z is the projection year and b is the block number; the arrays of composite loss ratio are found in cells AB51:BE51, BG51:CJ51, CL51:DO51, DQ51:ET51, and EV51:FY51 for blocks 1, 2, 3, 4, and 5, respectively. |  |

## Current Market.xls - Current Market Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AB19:BE48 | Expected Premium Inforce at Age Adjusted Premium Rates by Cohort for Block 1 (ExpInforce $_{2, x, 1}$ ) | $=\begin{array}{lr} 0, & y<1 \text { or } \mathrm{y}>20 \\ \text { AgeAdjPremRate } \mathrm{e}_{\mathrm{z}, \mathrm{y}, 1} *\left(\mathrm{l}_{\mathrm{z}, \mathrm{y}, 1(\mathrm{st})}+\mathrm{l}_{\mathrm{z}, \mathrm{y}, 1(\mathrm{im})}\right), & \end{array}$ <br> AgeAdjPremRate ${ }_{z, \mathrm{y}, 1}$ is from the appropriate cell CM-1!BT89:CM118 $\mathrm{l}_{\mathrm{z}, \mathrm{y}, 1(\mathrm{st})}$ is from the appropriate cell of CM-1!AA51:AU80 $\mathrm{l}_{\mathrm{z}, \mathrm{y}, 1(\mathrm{im})}$ is from the appropriate cell of CM-1!AA89:AU118 | Note that in this table, columns represent projection years, rows represent durations, and diagonals represent issue years. |
| AB51:BE51 | Composite Expected Loss Ratio by Projection Year for Block 1 | $=\begin{array}{lll} = & 0, & \sum_{\mathrm{x}=1}^{30} \operatorname{ExpInforce}_{\mathrm{z}, \mathrm{x}, 1}=0 \\ & \left(\sum_{i=1}^{30} \text { ExpInforce }_{\mathrm{z}, \mathrm{i}, 1} * \mathrm{LR}_{\mathrm{i}(\mathrm{pr})}\right) / \sum_{\mathrm{j}=1}^{30} \text { ExpInforce }_{\mathrm{z}, \mathrm{j}, 1}, & \text { otherwise } \end{array}$ |  |

Analogous calculations are performed for blocks 2-5 in cells BG19:FY51.

## Current Market.xls - Current Market-Summary

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| D6 | Initial Reference Premium | From Global Assumptions!C24 |  |
| D7 | Initial Reference Claim Cost <br> for Standard Lives | From Global Assumptions!D49 |  |
| D8 | Initial Reference Claim Cost <br> for Impaired Lives | From Global Assumptions!D60 |  |
| B12:B41 | Base Lapse Rates for <br> Standard Lives | From the appropriate cell of Global Assumptions!D29:D33 |  |
| D12:C41 | Base Lapse Rates for <br> Impaired Lives | From Global Assumptions!C54 |  |
| E12:E41 | Duration Factor | From the appropriate cell of Global Assumptions!D77:D81 |  |
| F12:F41 | Percentage-of-Claims <br> Expense Rates | From the appropriate cell of Global Assumptions!C70:C74 |  |
| G12:G41 | Base Commission Rates | From the appropriate cell of Global Assumptions!D70:D74 |  |
| H12:H41 | Renewal Commission Rates | From the appropriate cell of Global Assumptions!E70:E74 |  |

## Current Market.xls - Current Market-Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| J12:J41 | Premium Age Factor $\left(\mathrm{PAF}_{\mathrm{x}}\right)$ | $\begin{array}{lr} 1, & x=1 \\ \text { PAF }_{x-1} *(1+\text { PremGrowthAge }), & x=2,3,4, \ldots, 30 \end{array}$ <br> PremGrowthAge is from Global Assumptions!C25 |  |
| K12:K41 | Rate of Impairment | From the appropriate cell of Global Assumptions!E43:E47 |  |
| L12:L41 | Durational Rate Increase | From the appropriate cell of Current Market Assumptions!L19:L48 |  |
| O12:041 | Actual Trend (ActTrend ${ }_{z}$ ) | From the appropriate cell of Global Assumptions!B106:B135 |  |
| P12:P41 | Market New Business Rate (MarketRate ${ }_{z}$ ) | $\begin{array}{rlr} = & \mathrm{P}_{1(\mathrm{pr})} / \mathrm{l}_{1}, & \mathrm{z}=1 \\ & \text { MarketRate }_{\mathrm{z}-1} *\left(1+\text { ActTrend }_{\mathrm{z}-1}\right), & \mathrm{z}=2,3,4, \ldots, 30 \end{array}$ <br> $\mathrm{P}_{1(\mathrm{pr})}$ is from Current Market Assumptions!N19 <br> $\mathrm{l}_{1}$ is from Current Market Assumptions!G19 |  |
| Q12:Q41 | Company New Business Rate | $=\sum_{\mathrm{b}=1}^{5} \text { ComNewBusnRate }_{\mathrm{z}, \mathrm{~b}}$ <br> Note: In this and subsequent formulas on the Current Market-Summary tab, whenever a sum is taken over the five blocks, the values are taken from tab CM-1 for the first block, from tab CM-2 for the second block, etc. | Sum of premium for projection year z across all five blocks; this and other aggregations of premium rates and lapse rates across blocks implicitly assume that the blocks do not overlap. |

## Current Market.xls - Current Market-Summary

$\left.\begin{array}{|l|l|l|l|}\hline \text { Cells } & \text { Description } & \text { Formula } & \text { Comments } \\ \hline \text { T12:AM41 } & \begin{array}{l}\text { Aggregate New Business } \\ \text { Sales by Cohort } \\ \text { (AggSales } \\ z, y\end{array}\end{array}\right)$

## Current Market.xls - Current Market-Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AP51:BI80 | Aggregate Actual Lapse Rates of Impaired Lives by Cohort | $=\sum_{b=1}^{5} \mathrm{q}_{\mathrm{z}, \mathrm{y}, \mathrm{~b}(\mathrm{im})}$ |  |
| BL51:CE80 | Aggregate Combined Actual Lapse Rates by Cohort | $=\sum_{b=1}^{5} \mathrm{q}_{\mathrm{z}, \mathrm{y}, \mathrm{~b}}$ |  |
| T89:AM118 | Aggregate Enrollment of Impaired Lives by Cohort $\left(\mathrm{l}_{\text {z,y(im) }}\right)$ | $=\sum_{b=1}^{5} l_{z, y, b(i m)}$ |  |
| T119:AM119 | Aggregate Enrollment of Impaired Lives for Issue Year y | $=\sum_{\mathrm{z}=1}^{30} l_{\mathrm{z}, \mathrm{y}(\mathrm{im})}$ |  |
| AP89:BI118 | Aggregate Premium Rates after Durational Adjustment but Before Age Adjustment, by Cohort | $=\sum_{\mathrm{b}=1}^{5} \text { DurAdjPremRate }_{\mathrm{z}, \mathrm{y}, \mathrm{~b}}$ |  |
| BL89:CE118 | Aggregate Age-Adjusted Premium Rates by Cohort (AggAgeDurAdjPrem ${ }_{z, \mathrm{y}}$ ) | $=\sum_{b=1}^{5} \text { AgeDurAdjPrem }_{z, y, b}$ |  |
| T126:AM155 | Aggregate Age-Adjusted Market New Business Premium Rates by Cohort | $=\sum_{b=1}^{5} \text { AgeAdjMktNewBusnRate }_{\mathrm{z}, \mathrm{y}, \mathrm{~b}}$ |  |

## Current Market.xls - Current Market-Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AP126:BI155 | Aggregate Standard Lives Claim Levels by Cohort (AggClaims $\mathrm{z}_{\text {zy } \mathrm{yt})}$ ) | $=\sum_{b=1}^{5} \mathrm{C}_{z, \mathrm{y}, \mathrm{~b}(\mathrm{st})}$ |  |
| BL126:CE126 | Aggregate Impaired Lives Claim Levels by Cohort (AggClaims $\mathrm{z}_{\mathrm{z}, \mathrm{yim})}$ ) | $=\sum_{b=1}^{5} C_{z, y, b(i m)}$ |  |
| T164:AM193 | Aggregate Standard Lives Expense Levels by Cohort $\left(\operatorname{AggExp}_{z, y(s t)}\right)$ | $=\sum_{b=1}^{5} \operatorname{Exp}_{\mathrm{z}, \mathrm{y}, \mathrm{~b}(\mathrm{st})}$ |  |
| AP164:BI193 | Aggregate Impaired Lives Expense Levels by Cohort $\left(\operatorname{AggExp}_{z, y(i m)}\right)$ | $=\sum_{b=1}^{5} \operatorname{Exp}_{z, y, b(i m)}$ |  |
| BL164:CE193 | Aggregate Average Expense Levels by Cohort | $=\sum_{b=1}^{5} \operatorname{Exp}_{z, y, b}$ |  |
| CH164:CH193 | Aggregate Enrollment of Standard Lives by Projection Year $\left(\operatorname{Aggl}_{Z(5 t)}\right)$ | $=\sum_{\mathrm{y}=1}^{20} \mathrm{Aggl}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}$ |  |
| CH194 | Aggregate Enrollment of Standard Lives | $=\sum_{z=1}^{30} \operatorname{Aggl}_{z(\mathrm{st})}$ |  |

## Current Market.xls - Current Market-Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| CI164:CI193 | Aggregate Premium of Standard Lives by Projection Year $\left(\right.$ AggPremium $\left.{ }_{z(s t)}\right)$ | $=\sum_{\mathrm{y}=1}^{20}\left(\operatorname{Aggl}_{z, \mathrm{y}(\mathrm{st})} * \text { AggAgeDurAdjPrem }{ }_{z, y} * 12\right)$ |  |
| CI194 | Aggregate Premium of Standard Lives <br> (AggPremium ${ }_{\mathrm{st}}$ ) | $=\sum_{z=1}^{30} \text { AggPremium }_{z(\text { st })}$ |  |
| CJ164:CJ193 | Aggregate Claims of Standard Lives by Projection Year (AggClaims $\mathrm{z}_{\text {(st) }}$ ) | $=\sum_{\mathrm{y}=1}^{20}\left(\operatorname{Aggl}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \operatorname{AggClaims}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * 12\right)$ |  |
| CJ194 | Aggregate Claims of Standard Lives <br> (AggClaims ${ }_{\mathrm{st}}$ ) | $=\sum_{\mathrm{z}=1}^{30} \text { AggClaims }_{\mathrm{z}(\mathrm{st})}$ |  |
| CK164:CK193 | Aggregate Loss Ratio by Projection Year for Standard Lives | $=$ AggClaims $_{\text {z(st) }} /$ AggPremium $_{\text {z(st) }}$ |  |
| CK194 | Aggregate Loss Ratio for Standard Lives | $=$ AggClaims $_{\text {st }} /$ AggPremium $_{\text {st }}$ |  |

## Current Market.xls - Current Market-Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| CN164:CN193 | Aggregate Enrollment of Impaired Lives by Projection Year $\left(\mathrm{Aggl}_{z(\mathrm{im})}\right)$ | $=\sum_{\mathrm{y}=1}^{20} \operatorname{Aggl}_{\mathrm{z}, \mathrm{y}(\mathrm{im})}$ |  |
| CN194 | Aggregate Enrollment of Impaired Lives | $=\sum_{\mathrm{z}=1}^{30} \operatorname{Aggl}_{\mathrm{z}(\mathrm{im})}$ |  |
| CO164:CO193 | Aggregate Premium of Impaired Lives by Projection Year (AggPremium $_{z(\mathrm{im})}$ ) | $=\sum_{\mathrm{y}=1}^{20}\left(\operatorname{Aggl}_{\mathrm{z}, \mathrm{y}(\mathrm{im})} * \text { AggAgeDurAdjPrem } \mathrm{z}_{\mathrm{z}, \mathrm{y}} * 12\right)$ |  |
| CO194 | Aggregate Premium of Impaired Lives (AggPremium $_{\text {im }}$ ) | $=\sum_{z=1}^{30} \text { AggPremium }_{z(\text { im })}$ |  |
| CP164:CP193 | Aggregate Claims of Impaired Lives by Projection Year (AggClaims $\mathrm{z}_{\text {zim }}$ ) | $=\sum_{\mathrm{y}=1}^{20}\left(\operatorname{Aggl}_{\mathrm{z}, \mathrm{y}(\mathrm{im})} * \operatorname{AggClaims}_{\mathrm{z}, \mathrm{y}(\mathrm{im})} * 12\right)$ |  |
| CP194 | Aggregate Claims of Impaired Lives (AggClaims ${ }_{i m}$ ) | $=\sum_{\mathrm{z}=1}^{30} \text { AggClaims }_{\mathrm{z}(\mathrm{im})}$ |  |

## Current Market.xls - Current Market-Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| CQ164:CQ193 | Aggregate Loss Ratio by Projection Year for Impaired Lives | $=$ AggClaims $_{\text {z(im) }} /$ AggPremium $_{\text {z(im) }}$ |  |
| CQ194 | Aggregate Loss Ratio for Impaired Lives | $=$ AggClaims $_{\text {im }} /$ AggPremium $_{\text {im }}$ |  |
| CS164:CS193 | Aggregate Enrollment by Projection Year $\left(\mathrm{Aggl}_{\mathrm{z}}\right)$ | $=\operatorname{Aggl}_{\chi(\text { (st) }}+\operatorname{Aggl}_{\mathrm{z} \text { (im) }}$ |  |
| CS194 | Aggregate Enrollment | $=\sum_{\mathrm{z}=1}^{30} \mathrm{Aggl}_{\mathrm{z}}$ |  |
| CT164:CT193 | Aggregate Premium by Projection Year $\left(\right.$ AggPremium $\left._{z}\right)$ | $=$ AggPremium $_{\text {z(st) }}+$ AggPremium $_{\text {z(im) }}$ |  |
| CT194 | Aggregate Premium (AggPremium) | $=\sum_{\mathrm{z}=1}^{30} \operatorname{AggPremium}_{\mathrm{z}}$ |  |
| CU164:CU193 | Aggregate Claims by Projection Year (AggClaims ${ }^{\text {) }}$ | $=$ AggClaims $_{\text {z(st) }}+$ AggClaims $_{\text {z(im) }}$ |  |

## Current Market.xls - Current Market-Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| CU194 | Aggregate Claims (AggClaims) | $=\sum_{\mathrm{z}=1}^{30} \text { AggClaims }_{\mathrm{z}}$ |  |
| CV164:CV193 | Aggregate Claims PMPM by Projection Year | $=$ AggClaims ${ }_{\mathrm{z}} / \operatorname{Aggl}_{\mathrm{z}} / 12$ |  |
| CV194 | Aggregate Claims PMPM | = AggClaims / Aggl / 12 |  |
| CW164:CW193 | Aggregate Loss Ratio by Projection Year $\left(\mathrm{AggLR}_{\mathrm{z}}\right)$ | $=$ AggClaims $_{\text {z }} /$ AggPremium $_{\text {z }}$ |  |
| CW194 | Aggregate Loss Ratio | = AggClaims / AggPremium |  |
| CX164:CX193 | Aggregate Expected Loss Ratio by Projection Year (AggExpectedLR ${ }_{z}$ ) | $=\text { ExpectedLR }_{\mathrm{z}, 1}$ <br> ExpectedLR $\mathrm{R}_{\mathrm{z}, 1}$ is from the appropriate cell of Current Market Assumptions!V19:V48 | Since this uses the expected LRs for block one only, it does not represent the aggregate expected LR. |
| CY164:CY193 | Aggregate Actual to Expected Loss Ratio by Projection Year | $=$ AggLR $_{\mathrm{z}} /$ AggExpectedLR $_{\text {z }}$ |  |

## Current Market.xls - Current Market-Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| CZ164:CZ193 | Aggregate Rolling TwoYear Loss Ratio |  AggClaims $_{1} /$ AggPremium $_{1}$, <br> $=$ $\left(\right.$ AggClaims $_{z-1}+$ AggClaims $\left._{z}\right) /$ <br>  $\left(\right.$ AggPremium $\left._{z-1}+\operatorname{AggPremium}_{z}\right)$,$\quad z=2,3,4, \ldots, 30$ |  |
| DA164:DA193 | Aggregate Premium Less <br> Aggregate Claims by <br> Projection Year <br> (AggPminusAggC ${ }_{z}$ ) | $=$ AggPremium $_{\text {z }}-$ AggClaims $_{\text {z }}$ |  |
| DA194 | Aggregate Premium Less Aggregate Claims | = AggPremium - AggClaims |  |
| DB164:DB193 | Aggregate Expenses by Projection Year $\left(\right.$ AggExp $\left._{z}\right)$ | $=\sum_{\mathrm{y}=1}^{20}\left[\left(\operatorname{Aggl}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \operatorname{AggExp}_{z, \mathrm{y}(\mathrm{st})}\right)+\left(\operatorname{Aggl}_{z, \mathrm{y}(\mathrm{im})} * \operatorname{AggExp}_{z, y(\mathrm{im})}\right)\right] * 12$ |  |
| DB194 | Aggregate Expenses (AggExp) | $=\sum_{\mathrm{z}=1}^{30} \operatorname{AggExp}_{\mathrm{z}}$ |  |
| DC164:DC193 | Aggregate Expense Ratio by Projection Year | $=\operatorname{AggExp}_{z} /$ AggPremium $_{z}$ |  |
| DC194 | Aggregate Expense Ratio | = AggExp / AggPremium |  |

## Current Market.xls - Current Market-Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DD164:DD193 | Aggregate Gain by Projection Year ( AggGain $_{z}$ ) | $=$ AggPremium $_{z}-$ AggClaims $_{z}-$ AggExp $_{z}$ |  |
| DD194 | Aggregate Gain (AggGain) | = AggPremium - AggClaims - AggExp |  |
| DE164:DE193 | Aggregate Gain as a Percentage of Aggregate Premium by Projection Year | $=$ AggGain $_{\text {z }} /$ AggPremium $_{\text {z }}$ |  |
| DE194 | Aggregate Gain as a Percentage of Aggregate Premium | = AggGain / AggPremium |  |
| DF164:DF193 | Aggregate Risk-Based Capital by Projection Year $\left(\mathrm{AggRBC}_{z}\right)$ | $=\text { AggPremium }_{\mathrm{z}} * \mathrm{RBC} \%$ <br> RBC\% is from Global Assumptions!D83 |  |
| DG164:DG193 | Aggregate Opportunity Cost of Capital by Projection Year $\left(\mathrm{AggOCC}_{z}\right)$ | $=-\operatorname{AggRBC}_{z} * O C C \%$ <br> OCC\% is from Global Assumptions!D84 |  |
| DG194 | Aggregate Opportunity Cost of Capital | $=\sum_{z=1}^{30} \operatorname{AggOCC}_{z}$ |  |

## Current Market.xls - Current Market-Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DH164:DH193 | Aggregate Economic Gain by Projection Year (AggEconGain ${ }_{z}$ ) | $=$ AggGain $_{\text {z }}+\mathrm{OCC}_{\mathrm{z}}$ |  |
| DH194 | Aggregate Economic Gain | $=\sum_{\mathrm{z}=1}^{30} \text { AggEconGain }_{\mathrm{z}}$ |  |
| CT197 | Present Value of Aggregate Premium (PVAggPremium) | $=\mathrm{NPV}_{\text {int }}\left(\mathrm{AggPremium}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ | For all of the following present value calculations, int is from Global Assumptions !B63, and the present values are taken over $\mathbf{z}$ $=1,2,3, \ldots, 30$. |
| CU197 | Present Value of Aggregate Claims (PVAggClaims) | $=\mathrm{NPV}_{\text {int }}\left(\right.$ AggClaims $\left.^{\text {z }}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DA197 | Present Value of Aggregate Premium Less Aggregate Claims (PVAggPminusAggC) | $=\mathrm{NPV}_{\text {int }}\left(\text { AggPminusAggC }_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DB197 | Present Value of Aggregate <br> Expenses <br> (PVAggExp) | $=N P V_{\text {int }}\left(\operatorname{AggExp}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |

## Current Market.xls - Current Market-Summary

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| DD197 | Present Value of Aggregate <br> Gain <br> (PVAggGain) | $=\mathrm{NPV}_{\text {int }}\left(\right.$ AggGain $\left._{z}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DE197 | Present Value of Aggregate <br> Gain as a Percentage of <br> Present Value of Aggregate <br> Premium | $=$ PVAggGain / PVAggPremium |  |
| DG197 | Present Value of Aggregate <br> Opportunity Cost of Capital <br> (PVAggOCC) | $=\mathrm{NPV}_{\text {int }}\left(\right.$ AggOCC $\left._{z}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DH197 | Present Value of Aggregate <br> Economic Gain <br> (PVAggEconGain) | $=\mathrm{NPV}_{\text {int }}\left(\right.$ AggEconGain $\left._{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| CT198 | Present Value of Aggregate <br> Premium as a Percentage of <br> Present Value of Aggregate <br> Premium | $=\mathrm{PVAggPremium} \mathrm{/} \mathrm{PVAggPremium}$ |  |
| CU198 | Present Value of Aggregate <br> Claims as a Percentage of <br> Present Value of Aggregate <br> Premium | $=$ PVAggClaims / PVAggPremium | Identically equal to |

## Current Market.xls - Current Market-Summary

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| DA198 | Present Value of Aggregate <br> Premium Less Aggregate <br> Claims as a Percentage of <br> Present Value of Aggregate <br> Premium | $=$ PVAggPminusAggC / PVAggPremium |  |
| DB198 | Present Value of Aggregate <br> Expenses as a Percentage of <br> Present Value of Aggregate <br> Premium | $=$ PVAggExp / PVAggPremium |  |
| DD198 | Present Value of Aggregate <br> Gain as a Percentage of <br> Present Value of Aggregate <br> Premium | $=$ PVAggGain / PVAggPremium |  |
| DG198 | Present Value of Aggregate <br> Opportunity Cost of Capital <br> as a Percentage of Present <br> Value of Aggregate <br> Premium | $=$ PVAggOCC / PVAggPremium |  |
| DH198 | Present Value of Aggregate <br> Economic Gain as a <br> Percentage of Present Value <br> of Aggregate Premium | $=$ PVAggEconGain / PVAggPremium |  |

## Current Market.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| D4 | Block Number <br> (b) | Hardcoded value equal to the block number; i.e., 1 for CM-1, 2 for CM2 , etc. | Subscript b applies to each variable in CM-1, CM-2, etc. but is omitted from documentation. |
| D5 | Year Introduced (IntroYr) | From the appropriate cell of Global Assumptions!Q7:Q11 | Equals 1, 4, 7, 10, 13 for blocks 1, 2, 3, 4, and 5, respectively. |
| D6 | Initial Reference Premium (InitRefPrem) | From Global Assumptions!C24 |  |
| D7 | Initial Reference Claim Cost for Standard Lives (InitRefClaims ${ }_{\text {st }}$ ) | From Global Assumptions!D49 |  |
| D8 | Initial Reference Claim Cost for Impaired Lives (InitRefClaims ${ }_{i m}$ ) | From Global Assumptions!D60 |  |
| B12:B41 | Base Lapse Rate for Standard Lives (Baseq $_{\mathrm{x}(\mathrm{st})}$ ) | From the appropriate cell of Global Assumptions!D29:D33 |  |
| C12:C41 | Base Lapse Rate for Impaired Lives ( Baseq $_{x(\text { (im) }}$ ) | From Global Assumptions!C54 |  |

## Current Market.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| D12:D41 | Duration Factor ( $\mathrm{DF}_{\mathrm{x}}$ ) | From the appropriate cell of Global Assumptions!B77:B81 |  |
| E12:E41 | Per Policy Expense Rates (Exppol(x)) | From the appropriate cell of Global Assumptions!B70:B74 |  |
| F12:F41 | Percentage-of-Claims Expense Rates (Exp\%C(x)) | From the appropriate cell of Global Assumptions!C70:C74 |  |
| G12:G41 | Base Commission Rates $\left(\mathrm{Comm}_{\mathrm{B}(\mathrm{x})}\right)$ | From the appropriate cell of Global Assumptions!D70:D74 |  |
| H12:H41 | Renewal Commission Rates $\left(\mathrm{Comm}_{\mathrm{R}(\mathrm{x})}\right)$ | From the appropriate cell of Global Assumptions!E70:E74 |  |
| I12:I41 | Other Premium-Related Expense Rates (Expoth\%P(x)) | From the appropriate cell of Global Assumptions!F70:F74 |  |
| J12:J41 | Premium Age Factor $\left(\mathrm{PAF}_{\mathrm{x}}\right)$ | $\begin{array}{lr} 1, & x=1 \\ \operatorname{PAF}_{\mathrm{x}-1} *(1+\text { PremGrowthAge }), & x=2,3,4, \ldots, 30 \end{array}$ <br> PremGrowthAge is from Global Assumptions!C25 |  |

## Current Market.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| K12:K41 | Rate of Impairment $\left(\mu_{\mathrm{x}}\right)$ | From the appropriate cell of Global Assumptions!E43:E47 |  |
| L12:L41 | Durational Rate Increase ( $\mathrm{DRI}_{\mathrm{x}}$ ) | From the appropriate cell of Current Market Assumptions!L19:L48 |  |
| O12:O41 | Reference Premium ( RefPrem $_{z}$ ) | $\begin{array}{lr} =\begin{array}{lr} \text { InitRefPrem, } & z=1 \\ & \text { RefPrem }_{z-1} *\left(1+\text { ActTrend }_{z-1}\right), \end{array} \quad z=2,3,4, \ldots, 30 \end{array}$ | Note that columns B:L are based on duration (subscript = x), but columns O:Y are based on projection year (subscript $=\mathrm{z}$ ) |
| P12:P41 | Baseline New Sales (BaseSales ${ }_{z}$ ) | From the appropriate cell of Global Assumptions!P15:T44 |  |
| Q12:Q41 | Standard Lives Reference Claims (RefClaims $\left.{ }_{z(s t)}\right)$ | $\begin{array}{lr} = & \text { InitRefClaims }_{\text {st }}, \\ \text { RefClaims }_{z-1(\mathrm{st})} *\left(1+\text { ActTrend }_{z-1}\right), & \mathrm{z}=1 \\ \mathrm{z}=2,3,4, \ldots, 30 \end{array}$ |  |
| R12:R41 | Impaired Lives Reference Claims (RefClaims $_{z(\mathrm{im})}$ ) | $\begin{array}{lr} =\quad \text { InitRefClaims }_{\mathrm{im}}, & \mathrm{z}=1 \\ \text { RefClaims }_{z-1(\mathrm{im})} *\left(1+\text { ActTrend }_{z-1}\right), & \mathrm{z}=2,3,4, \ldots, 30 \end{array}$ |  |
| S12:S41 | Actual Trend (ActTrend ${ }_{z}$ ) | From appropriate cell of Global Assumptions!B106:B135 |  |

## Current Market.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| T13:T41 | Implemented Rate Increase for New Business (ImpRateIncNew ${ }_{z}$ ) | $\text { = min(MaxRateInc, RegDamp * ReqRateIncNew }{ }_{z} \text { ), }$ <br> MaxRateInc is from Global Assumptions!D100 <br> RegDamp is from the appropriate cell of Global Assumptions!D90:D99, based on the value of ReqRateIncNew ${ }_{z}$ | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$. |
| U13:U41 | Implemented Rate Increase for Renewal Business (ImpRateIncRen ${ }_{z}$ ) | $=$ ImpRateIncNew ${ }_{\text {z }}$ | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$. |
| V12:V41 | Market New Business Rate (MarketRate ${ }_{z}$ ) | $\begin{array}{rlr} = & \mathrm{P}_{1(\mathrm{pr})} / \mathrm{l}_{1}, & \mathrm{z}=1 \\ & \text { MarketRate }_{\mathrm{z}-1} *\left(1+\text { ActTrend }_{z-1}\right), & \mathrm{z}=2,3,4, \ldots, 30 \end{array}$ <br> $\mathrm{P}_{1(\mathrm{pr})}$ is from Current Market Assumptions <br> $\mathrm{l}_{1}$ is from Current Market Assumptions |  |
| W12:W41 | Company New Business Rate (ComNewBusnRate ${ }_{z}$ ) | $=$0, BaseSales $_{\mathrm{z}}=0$ <br> MarketRate $_{\mathrm{z}} *(1-$ Disc@Intro $),$BaseSales $_{\mathrm{z}} \neq 0$ and $\mathrm{z}=$ IntroYr  <br> ComNewBusnRate $_{\text {z-1 }} *\left(1+\right.$ ImpRateIncNew $\left._{z}\right)$,  <br> BaseSales $_{z} \neq 0$ and $\mathrm{z}>$ IntroYr  <br> Disc@Intro is from Global Assumptions!D26 |  |

## Current Market.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| X13:X41 | Requested Rate Increase for New Business (ReqRateIncNew ${ }_{z}$ ) |  <br> ExpectedLR $\mathrm{R}_{\mathrm{z}-2}$ is from the appropriate cell of Current Market Assumptions!V19:Z48, based on the block and projection year <br> MaxLR is from Current Market Assumptions!E5 | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$. |
| Y13:Y41 | Requested Rate Increase for Renewal Business (ReqRateIncRen ${ }_{z}$ ) | $=$ ReqRateIncNew ${ }_{\text {z }}$ | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$. |

## Current Market.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AB12:AU41 | New Business Sales by Cohort ( NewSales $_{\text {z, }}$ ) | $\begin{aligned} & 0, \mathrm{x} \neq 1 \\ &=\quad \max \left\{0, \text { BaseSales }_{\mathrm{z}} *\right. \\ & {\left[1+\text { MktPriceSens * }\left(\left(\text { MarketRate }_{\mathrm{Z}} / \text { RefPrem }_{\mathrm{z}}\right)-1\right)\right] * } \\ & {\left[1+\text { ComPriceSens }^{*}\left(\left(\text { ComNewBusnRate }_{\mathrm{z}} / \text { MarketRate }_{\mathrm{z}}\right)-1\right)\right], } \\ & \text { otherwise } \end{aligned}$ <br> MktPriceSens is from Global Assumptions!D14 <br> ComPriceSens is from Global Assumptions!D15 |  |
| AB42:AU42 | Total New Business Sales for Issue Year y | $=\sum_{\mathrm{z}=1}^{30} \text { NewSales }_{z, \mathrm{y}}$ |  |

## Current Market.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AX12:BQ41 | Actual Lapse Rates for Standard Lives by Cohort ( $\mathrm{q}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}$ ) | 0 , $\mathrm{x} \leq 1 \text { or } \text { BaseSales }_{\mathrm{y}}=0$ <br> $\max \left\{\mathrm{q}_{\min (\mathrm{st})}, \min \left[\mathrm{q}_{\max (\mathrm{st})}\right.\right.$, Baseq $_{\mathrm{x}-1(\mathrm{st})}+\left(\left(\right.\right.$ AgeAdjPremRate $_{\mathrm{z}, \mathrm{y}}$ <br> / AgeAdjPremRate ${ }_{z-1, \mathrm{y}}$ ) - 1 - ActTrend $_{\mathrm{z}}$ ) LapseAdjTrend $_{\text {st }}$ <br> * (((AgeAdjPremRate ${ }_{\text {z,y }} /$ AgeAdjMktNewBusnRate $\left._{\mathrm{z}, \mathrm{y}}\right)$ - 1) <br> $=\quad *$ LapseAdjMkt $\left._{\mathrm{st}}+1\right)-\left(\left(\left(\right.\right.\right.$ ComNewBusnRate $_{\mathrm{y}} /$ RefPrem $\left._{\mathrm{y}}\right)$ <br> $-1) *$ LapseAdjSale $\left.\left.\left._{\mathrm{st}}\right)\right]\right\}, \quad \mathrm{x}=2,3$, or 4 and BaseSales $_{\mathrm{y}} \neq 0$ <br> $\max \left\{\mathrm{q}_{\min (\mathrm{st})}, \min \left[\mathrm{q}_{\max (\mathrm{st})}\right.\right.$, Baseq $_{\mathrm{x}-1(\mathrm{st})}+\left(\left(\right.\right.$ AgeAdjPremRate $_{\mathrm{z}, \mathrm{y}}$ <br> / AgeAdjPremRate ${ }_{z-1, \mathrm{y}}$ ) - 1 - ActTrend $_{\mathrm{z}}$ ) * LapseAdjTrend $_{\text {st }}$ <br> * (((AgeAdjPremRate ${ }_{z, \mathrm{y}}$ / AgeAdjMktNewBusnRate $\left.{ }_{\text {z,y }}\right)$ - 1) <br> * LapseAdjMkt $\left.\left.\left._{\text {st }}+1\right)\right]\right\}$, <br> $\mathrm{q}_{\text {min(st) }}$ is from Global Assumptions!D40 <br> $\mathrm{q}_{\max (\mathrm{st})}$ is from Global Assumptions!D39 <br> LapseAdjTrend $_{\text {st }}$ is from Global Assumptions!D36 <br> LapseAdjMkt $_{\text {st }}$ is from Global Assumptions!D37 <br> LapseAdjSale ${ }_{\text {st }}$ is from Global Assumptions!!D38 |  |
| BT12:CM41 | Newly Impaired Lives by Cohort (NewImpLives $_{z, y}$ ) | $\begin{array}{lrr} =0, & \mathrm{x} \leq 1 \text { or BaseSales } \mathrm{B}_{\mathrm{y}}=0 \\ \mathrm{l}_{\mathrm{z}-1, \mathrm{y}(\mathrm{st})} * \mu_{\mathrm{x}-1} *\left(1-\mathrm{q}_{\mathrm{z}, \mathrm{y}(\mathrm{im})}\right), & \text { otherwise } \end{array}$ |  |
| AB51:AU80 | Enrollment of Standard Lives by Cohort $\left(l_{z, y(s t)}\right)$ | $=\begin{array}{ll} 0, & x<1 \\ \text { NewSales }_{z, y}, & x=1 \\ \text { NewSales }_{\mathrm{z}, \mathrm{y}}+\mathrm{l}_{\mathrm{z}-1, \mathrm{y}(\mathrm{st})} *\left(1-\mu_{\mathrm{x}-1}\right) *\left(1-\mathrm{q}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}\right), & \mathrm{x}>1 \end{array}$ |  |

## Current Market.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AB81:AU81 | Total Enrollment of Standard Lives by Issue Year | $=\sum_{\mathrm{z}=1}^{30} \mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}$ |  |
| AX51:BQ80 | Actual Lapse Rates for Impaired Lives by Cohort ( $\mathrm{q}_{\mathrm{z}, \mathrm{y}(\mathrm{im})}$ ) | $\begin{aligned} & 0, \quad \mathrm{x} \leq 1 \text { or } \text { BaseSales }_{\mathrm{y}}=0 \\ & =\quad \begin{array}{l} \max \left\{\mathrm{q}_{\min (\mathrm{im})}, \min \left[\mathrm{q}_{\max (\mathrm{im})}, \text { Baseq }_{\mathrm{x}-1(\mathrm{im})}+\left(\left(\text { AgeAdjPremRate }_{\mathrm{z}, \mathrm{y}}\right.\right.\right.\right. \\ \left.\left.\left.\left./ \text { AgeAdjPremRate }_{\mathrm{z}-1, \mathrm{y}}\right)-1-\text { ActTrend }_{\mathrm{z}}\right) * \text { LapseAdjTrend }_{\mathrm{im}}\right]\right\}, \\ \text { otherwise } \end{array} \\ & \mathrm{q}_{\mathrm{min}(\mathrm{im})} \text { is from Global Assumptions!D58 } \\ & \mathrm{q}_{\max (\mathrm{im})} \text { is from Global Assumptions!D57 } \\ & \text { LapseAdjTrend }_{\mathrm{im}} \text { is from Global Assumptions!D56 } \end{aligned}$ |  |
| BT51:CM80 | Actual Combined Lapse Rates by Cohort ( $\mathrm{q}_{\mathrm{z}, \mathrm{y}}$ ) | $\begin{array}{lll} =\quad 0, & l_{z, y(\mathrm{st})}+\mathrm{l}_{z, \mathrm{y}(\mathrm{im})}=0 \\ & {\left[\left(\mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \mathrm{q}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}\right)+\left(\mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{im})} * \mathrm{q}_{\mathrm{z}, \mathrm{y}(\mathrm{im})}\right)\right] /\left(\mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}+\mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{im})}\right),} & \text { otherwise } \end{array}$ |  |
| AB89:AU118 | Enrollment of Impaired Lives by Cohort $\left(l_{z, y(i m)}\right)$ | $\begin{array}{lll} =0, & x=1 \\ & \text { NewImpLives }_{z, y}+\left[\mathrm{l}_{\mathrm{z}-1, \mathrm{y}(\mathrm{im})} *\left(1-\mathrm{q}_{z, \mathrm{y}(\mathrm{im})}\right)\right], & \mathrm{x}>1 \end{array}$ |  |
| AB119:AU119 | Total Enrollment of Impaired Lives by Issue Year | $=\sum_{\mathrm{z}=1}^{30} l_{\mathrm{z}, \mathrm{y}(\mathrm{im})}$ |  |

## Current Market.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AX89:BQ118 | Premium Rates after Durational Adjustment but Before Age Adjustment, by Cohort (DurAdjPremRate ${ }_{z, y}$ ) | $\begin{array}{ll} 0, & \text { BaseSales }_{\mathrm{y}}=0 \\ = & \text { ComNewBusnRate }_{\mathrm{z}}, \\ \text { DurAdjPremRate }_{\mathrm{z}-1, \mathrm{y}} *\left(1+\text { ImpRateIncRen }_{\mathrm{z}}\right) *\left(1+\text { DRI }_{\mathrm{x}}\right), \end{array}$ |  |
| BT89:CM118 | Premium Rates Adjusted for both Duration and Age (AgeAdjPremRate ${ }_{z, y}$ ) | $=$ DurAdjPremRate $_{\text {z,y }} *$ PAF $_{\text {x }}$ |  |
| AB126:AU155 | Age-Adjusted Market-Level New Business Premium Rates by Cohort <br> (AgeAdjMktNew <br> BusnRate $_{z, y}$ ) | $\begin{array}{lr} 0, & \mathrm{x}<1 \text { or BaseSales }{ }_{y}=0 \\ \text { MarketRate }_{\mathrm{z}} * \text { PAF }_{\mathrm{x}}, & \text { otherwise } \end{array}$ |  |

## Current Market.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AX126:BQ155 | Standard Lives Claim Levels by Cohort ( $\mathrm{C}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}$ ) |  |  |
| BT126:CM155 | Impaired Lives Claim Levels by Cohort ( $\mathrm{C}_{z, y(\mathrm{im})}$ ) | $=$0, BaseSales $_{y}=0$ <br> $\operatorname{RefClaims}_{z(i m)}$, BaseSales $_{y} \neq 0$ and $x=1$ <br> $C_{z-1, y(i m)} *\left(1+\right.$ ActTrend $\left._{z-1}\right) *(1+$ AgingTrend $)$, otherwise <br> AgingTrend is from Global Assumptions!C22 |  |
| AB164:AU193 | Standard Lives Expense Levels by Cohort $\left(\operatorname{Exp}_{z, y(s t)}\right)$ | Inflation is from Global Assumptions!B64 |  |

## Current Market.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AX164:BQ193 | Impaired Lives Expense Levels by Cohort $\left(\operatorname{Exp}_{z, y(i m)}\right)$ | Inflation is from Global Assumptions!B64 |  |
| BT164:CM193 | Average Expense Levels by Cohort $\left(\operatorname{Exp}_{z, y}\right)$ | otherwise |  |
| CP164:CP193 | Standard Lives Enrollment by Projection Year $\left(l_{z(s t)}\right)$ | $=\sum_{y=1}^{20} l_{z, y(s t)}$ |  |
| CP194 | Total Standard Lives Exposure | $=\sum_{z=1}^{30} l_{z(s t)}$ | "Total" refers to the sum over all 30 projection years. |
| CQ164:CQ193 | Standard Lives Premium by Projection Year ( $\mathrm{P}_{\mathrm{z}(\mathrm{st})}$ ) | $=\sum_{\mathrm{y}=1}^{20} \mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \text { AgeAdjPremRate }_{\mathrm{z}, \mathrm{y}} * 12$ |  |

## Current Market.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| CQ194 | Total Standard Lives Premium $\left(\mathrm{P}_{\mathrm{st}}\right)$ | $=\sum_{\mathrm{z}=1}^{30} \mathrm{P}_{\mathrm{z}(\mathrm{st})}$ |  |  |
| CR164:CR193 | Standard Lives Claims by Projection Year $\left(\mathrm{C}_{\mathrm{z}(\mathrm{stt})}\right)$ | $=\sum_{\mathrm{y}=1}^{20} \mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \mathrm{C}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * 12$ |  |  |
| CR194 | Total Standard Lives Claims (C $\mathrm{C}_{\mathrm{st}}$ ) | $=\sum_{z=1}^{30} C_{z(s t)}$ |  |  |
| CS164:CS193 | Standard Lives Loss Ratio by Projection Year | $\begin{aligned} &= 0, \\ & C_{z(s t)} / P_{z(s t)}, \end{aligned}$ | $\mathrm{P}_{z(\mathrm{st})}=0$ <br> otherwise |  |
| CS194 | Standard Lives Loss Ratio | $\begin{array}{ll} = & 0, \\ C_{\mathrm{st}} / \mathrm{P}_{\mathrm{st}}, \end{array}$ | $\mathrm{P}_{\mathrm{st}}=0$ <br> otherwise |  |
| CV164:CV193 | Impaired Lives Enrollment by Projection Year $\left(l_{z(i m)}\right)$ | $=\sum_{\mathrm{y}=1}^{20} l_{\mathrm{z}, \mathrm{y}(\mathrm{im})}$ |  |  |
| CV194 | Total Impaired Lives Exposure | $=\sum_{z=1}^{30} l_{z(i m)}$ |  |  |

## Current Market.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| CW164:CW193 | Impaired Lives Premium by Projection Year $\left(\mathrm{P}_{\mathrm{z}(\mathrm{im})}\right)$ | $=\sum_{\mathrm{y}=1}^{20} \mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{im})} * \text { AgeAdjPremRate }_{\mathrm{z}, \mathrm{y}} * 12$ |  |  |
| CW194 | Total Impaired Lives Premium $\left(\mathrm{P}_{\mathrm{im}}\right)$ | $=\sum_{\mathrm{z}=1}^{30} \mathrm{P}_{\mathrm{z}(\mathrm{~m})}$ |  |  |
| CX164:CX193 | Impaired Lives Claims by Projection Year ( $\mathrm{C}_{\mathrm{z} \text { (im) }}$ ) | $=\sum_{\mathrm{y}=1}^{20} l_{\mathrm{z}, \mathrm{y}(\mathrm{~m})} * \mathrm{C}_{\mathrm{z}, \mathrm{y}(\mathrm{im})} * 12$ |  |  |
| CX194 | Total Impaired Lives Claims ( $\mathrm{C}_{\mathrm{im}}$ ) | $=\sum_{\mathrm{z}=1}^{30} \mathrm{C}_{\mathrm{z}(\mathrm{im})}$ |  |  |
| CY164:CY193 | Impaired Lives Loss Ratio by Projection Year | $\begin{aligned} = & 0, \\ & \mathrm{C}_{\mathrm{z}(\mathrm{im})} / \mathrm{P}_{\mathrm{z}(\mathrm{im})}, \end{aligned}$ | $\mathrm{P}_{\mathrm{z}(\mathrm{im})}=0$ <br> otherwise |  |
| CY194 | Impaired Lives Loss Ratio | $\begin{aligned} & =0, \\ & C_{\mathrm{im}} / \mathrm{P}_{\mathrm{im}}, \end{aligned}$ | $\mathrm{P}_{\mathrm{im}}=0$ <br> otherwise |  |
| DA164:DA193 | Combined Enrollment by Projection Year $\left(l_{z}\right)$ | $=l_{z(\text { sti) }}+l_{z(\text { (im) }}$ |  | "Combined" refers to the combination of standard and impaired. |

## Current Market.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| DA194 | Total Combined Exposure (l) | $=\sum_{\mathrm{z}=1}^{30} 1_{\mathrm{z}}$ |  |  |
| DB164:DB193 | Combined Premium by Projection Year $\left(\mathrm{P}_{\mathrm{z}}\right)$ | $=\mathrm{P}_{\mathrm{z}(\mathrm{st})}+\mathrm{P}_{\mathrm{z}(\mathrm{im})}$ |  |  |
| DB194 | Total Combined Premium (P) | $=\sum_{z=1}^{30} \mathrm{P}_{\mathrm{z}}$ |  |  |
| DC164:DC193 | Combined Claims by Projection Year ( $\mathrm{C}_{\mathrm{z}}$ ) | $=\mathrm{C}_{\mathrm{z}(\mathrm{st})}+\mathrm{C}_{\mathrm{z} \text { (im) }}$ |  |  |
| DC194 | Total Combined Claims (C) | $=\sum_{z=1}^{30} C_{z}$ |  |  |
| DD164:DD193 | Combined Claims PMPM by Projection Year | $\begin{aligned} = & 0, \\ & C_{z} / l_{z} / 12, \end{aligned}$ | $\begin{array}{r} \mathrm{l}_{\mathrm{z}}=0 \\ \text { otherwise } \end{array}$ |  |
| DD194 | Total Combined Claims PMPM | $\begin{aligned} = & 0 \\ & C / l / 12 \end{aligned}$ | $\mathrm{l}=0$ <br> otherwise |  |

## Current Market.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DE164:DE193 | Combined Loss Ratio by Projection Year $\left(\mathrm{LR}_{\mathrm{z}}\right)$ | $\begin{array}{llr} \hline=0, & P_{z}=0 \\ C_{z} / P_{z}, & \text { otherwise } \end{array}$ |  |
| DE194 | Total Combined Loss Ratio | $\begin{array}{llr} = & 0, & \mathrm{P}=0 \\ & \mathrm{C} / \mathrm{P}, & \text { otherwise } \end{array}$ |  |
| DF164:DF193 | Combined Expected Loss Ratio by Projection Year (ExpectedLR ${ }_{z}$ ) | From the appropriate cell of Current Market Assumptions!V19:Z48, based on the block and projection year |  |
| DG164:DG193 | Actual-to-Expected Combined Loss Ratio by Projection Year | $=$0, ExpectedLR $_{z}=0$ <br>  $\mathrm{LR}_{\mathrm{z}} /$ ExpectedLR $_{z}$,$\quad$ otherwise |  |
| DH164:DH193 | Rolling Two-Year Combined Loss Ratio by Projection Year | $=\begin{array}{lr} \begin{array}{lr} 0, & \left(\mathrm{z}=1 \text { and } \mathrm{P}_{\mathrm{z}}=0\right) \\ \mathrm{C}_{\mathrm{z}} / \mathrm{P}_{\mathrm{z}}, & \text { or }\left(\mathrm{z}>1 \text { and } \mathrm{P}_{\mathrm{z}-1}+\mathrm{P}_{\mathrm{z}}=0\right) \\ \left(\mathrm{C}_{\mathrm{z}-1}+\mathrm{C}_{\mathrm{z}}\right) /\left(\mathrm{P}_{\mathrm{z}-1}+\mathrm{P}_{\mathrm{z}}\right), & \mathrm{z}=1 \text { and } \mathrm{P}_{\mathrm{z}} \neq 0 \\ \text { otherwise } \end{array} \end{array}$ |  |
| DI164:DI193 | Combined Premium Less Claims by Projection Year ( PminusC $_{z}$ ) | $=\mathrm{P}_{\mathrm{z}}-\mathrm{C}_{\mathrm{z}}$ |  |
| DI194 | Total Combined Premium Less Claims | $=\mathrm{P}-\mathrm{C}$ |  |

## Current Market.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| DJ164:DJ193 | Combined Expenses by Projection Year $\left(\operatorname{Exp}_{z}\right)$ | $=12 *\left[\sum_{y=1}^{20}\left(l_{z, y(s t)} * \operatorname{Exp}_{z, y(s t)}\right)+\sum_{y=1}^{20}\left(l_{z, y(i m)} * \operatorname{Exp}_{z, y(i m)}\right)\right]$ |  |  |
| DJ194 | Total Combined Expenses (Exp) | $=\sum_{z=1}^{30} \operatorname{Exp}_{z}$ |  |  |
| DK164:DK193 | Combined Expense Ratio by Projection Year | $\begin{array}{ll} =\quad 0, \\ & \operatorname{Exp}_{z} / P_{z}, \end{array}$ | $\mathrm{P}_{\mathrm{z}}=0$ <br> otherwise |  |
| DK194 | Total Combined Expense Ratio | $\begin{array}{ll} =\quad 0, \\ & \operatorname{Exp} / \mathrm{P}, \end{array}$ | $\mathrm{P}=0$ <br> otherwise |  |
| DL164:DL193 | Combined Gain by Projection Year (Gain ) | $=\mathrm{P}_{\mathrm{z}}-\mathrm{C}_{\mathrm{z}}-\operatorname{Exp}_{\mathrm{z}}$ |  |  |
| DL194 | Total Combined Gain (Gain) | $=\mathrm{P}-\mathrm{C}-\operatorname{Exp}$ |  |  |
| DM164:DM193 | Combined Gain as a <br> Percentage of Combined <br> Premium by Projection Year | $\begin{array}{ll} =\quad 0, \\ \text { Gain }_{\mathrm{z}} / \mathrm{P}_{\mathrm{z}} \end{array}$ | $\mathrm{P}_{\mathrm{z}}=0$ <br> otherwise |  |
| DM194 | Total Combined Gain as a Percentage of Combined Premium | $\begin{array}{ll} =\quad 0, \\ & \text { Gain / P, } \end{array}$ | $\mathrm{P}=0$ <br> otherwise |  |

## Current Market.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DN164:DN193 | Risk-Based Capital by Projection Year $\left(\mathrm{RBC}_{\mathrm{z}}\right)$ | $=\mathrm{P}_{\mathrm{z}} * \mathrm{RBC} \%$ <br> RBC\% is from Global Assumptions!D83 | Uses a predefined percentage of premium as a proxy for riskbased capital requirement. |
| DO164:DO193 | Opportunity Cost of Capital by Projection Year ( $\mathrm{OCC}_{\mathrm{z}}$ ) | $=-\mathrm{RBC}_{\mathrm{z}} * \mathrm{OCC} \%$ <br> OCC\% is from Global Assumptions!D84 |  |
| DO194 | Total Opportunity Cost of Capital | $=\sum_{\mathrm{z}=1}^{30} \mathrm{OCC}_{\mathrm{z}}$ |  |
| DP164:DP193 | Economic Gain by Projection Year (EconGain ${ }_{z}$ ) | $=$ Gain $_{\mathrm{z}}+\mathrm{OCC}_{\mathrm{z}}$ |  |
| DP194 | Total Economic Gain | $=\sum_{\mathrm{z}=1}^{30} \text { EconGain }_{\mathrm{z}}$ |  |
| DB197 | Present Value of Combined Premium (PVPremium) | $=N P V_{\text {int }}\left(\mathrm{P}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ | All present values in this section are taken over all 30 projection years, and int is from Global Assumptions!B63. |

## Current Market.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| DC197 | Present Value of Combined <br> Claims <br> (PVClaims) | $\mathrm{NPV}_{\mathrm{int}}\left(\mathrm{C}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DI197 | Present Value of Combined <br> Premium Less Combined <br> Claims <br> (PVPminusC) | $=\mathrm{NPV}_{\mathrm{int}}\left(\right.$ PminusC $\left._{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DJ197 | Present Value of Combined <br> Expenses <br> (PVExp) | $=\mathrm{NPV}_{\mathrm{int}}\left(\operatorname{Exp}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DL197 | Present Value of Combined <br> Gain <br> (PVGain) | $=\mathrm{NPV}_{\mathrm{int}}\left(\mathrm{Gain}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DO197 | Present Value of <br> Opportunity Cost of Capital <br> (PVOCC) | $=\mathrm{NPV}_{\text {int }}\left(\mathrm{OCC}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DP197 | Present Value of Economic <br> Gain <br> $($ PVEconGain $)$ | $=\mathrm{NPV}_{\text {int }}($ EconGain $) * \sqrt{1+\mathrm{int}}$ |  |

## Current Market.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| DB198 | Present Value of Combined <br> Premium as a Percentage of <br> Present Value of Combined <br> Premium | $=$ PVPremium / PVPremium | Identically equal to <br> $100 \%$ |
| DC198 | Present Value of Combined <br> Claims as a Percentage of <br> Present Value of Combined <br> Premium | $=$ PVClaims / PVPremium |  |
| DI198 | Present Value of Combined <br> Premium Less Combined <br> Claims as a Percentage of <br> Present Value of Combined <br> Premium | $=$ PVPminusC / PVPremium |  |
| DJ198 | Present Value of Combined <br> Expenses as a Percentage of <br> Present Value of Combined <br> Premium | $=$ PVExp / PVPremium |  |
| DL198 | Present Value of Combined <br> Gain as a Percentage of <br> Present Value of Combined <br> Premium | $=$ PVGain / PVPremium |  |

## Current Market.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| DO198 | Present Value of <br> Opportunity Cost of Capital <br> as a Percentage of Present <br> Value of Combined <br> Premium | $=$ PVOCC / PVPremium |  |
| DP198 | Present Value of Economic <br> Gain as a Percentage of <br> Present Value of Combined <br> Premium | $=$ PVEconGain / PVPremium |  |

## Pre-Funding.xls - Global Assumptions

The Global Assumptions tab within the Pre-Funding spreadsheet is an exact copy of the analogous tab in the Global spreadsheet. The field names, cell numbers, and values are identical. If a change is made in the Global Assumptions tab of the Global spreadsheet, the Global Assumptions tabs of all other spreadsheets in the model will be updated automatically the next time they are opened.

## Pre-Funding.xls - DBPR Assumptions

| Cells | Description | Formula |  |
| :--- | :--- | :--- | :--- |
| E5 | Initial Reference Claim Cost <br> for Standard Lives <br> (InitRefClaims ${ }_{\text {st }}$ | From Global Assumptions!D49 | Comments |
| E6 | Initial Reference Claim Cost <br> for Impaired Lives <br> (InitRefClaimsim) | From Global Assumptions!D60 | Reserve Discount Rate <br> (RsvDiscRate) |
| E7 | $=3.5 \%$ | Hardcoded value; this <br> and subsequent <br> hardcoded values may <br> be modified by the user <br> to analyze different <br> scenarios or test <br> sensitivity. |  |
| E8 | Earnings on Reserves <br> (Return\%) | $=5.0 \%$ | Hardcoded value |
| F9 | Durational Deterioration <br> Limitation Period <br> (DDLP) | $=30$ | Hardcoded value; <br> period during which <br> the probability of a <br> standard life becoming <br> impaired is assumed to <br> be greater than zero for <br> pricing purposes |

## Pre-Funding.xls - DBPR Assumptions

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| E10 | Expected Monthly Premium <br> Rate <br> (ExpPrem) | $\$ 167$ | Hardcoded value |
| F11 | Excess of Premium Trend <br> over Claim Trend <br> (ExcessPremTrend) | $=2.0 \%$ | Hardcoded value |
| L5 | Preliminary Term Period <br> (PrelimTerm) | $=1$ | Hardcoded value |
| L7 | Required Reserve Margin <br> (ReqRsvMargin) | $=10.0 \%$ | Hardcoded value |
| L8 | Per Policy Profit Charge <br> Assumption <br> (AssumProfChg | $=\$ 1.50$ | Hardcoded value |
| L9 | Percentage-of-Claims Profit <br> Charge Assumption <br> (AssumProfChg\%c) | $=1.00 \%$ | Hardcoded value |

## Pre-Funding.xls - DBPR Assumptions

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| P6:P10 | Durational Rate Increase <br> Assumptions <br> (DRAssump ${ }_{x}$ ) | $=\begin{aligned} & 0.0 \%, \\ & 0.0 \%, \\ & 0.0 \%, \\ & 0.0 \%, \\ & 0.0 \%, \end{aligned}$ | $\begin{array}{r} x=2 \\ x=3 \\ x=4 \\ x=5 \\ x=6,7,8, \ldots, 30 \end{array}$ | Hardcoded values; note that the indices shown in cells 06:O10 refer to renewal number, which is one less than duration (x). |
| V5 | Minimum Annual Antiselection Factor (minAST) | = $50.0 \%$ |  | Hardcoded value; represents floor on annual adjustment for adverse selection |
| V6 | Minimum Cumulative Antiselection Factor (minCAST) | = 100.0\% |  | Hardcoded value; represents floor on cumulative adjustment for adverse selection |
| V7 | Reserve Retained on Unanticipated Lapses (RsvRetUnantLapse) | = $75 \%$ |  | Hardcoded value |

## Pre-Funding.xls - DBPR Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| B14:B43 | Standard Lives Base Lapse Rates Used in Pricing $\left(\mathrm{q}_{\mathrm{x}(\mathrm{st}, \mathrm{pr})}\right)$ | $\mathrm{q}_{\text {min(st) }}$ is from Global Assumptions!D40 <br> $\mathrm{q}_{\max (\mathrm{st})}$ is from Global Assumptions!D39 <br> Baseq $_{\text {(st, pr) }}$ is from the appropriate cell of Global Assumptions!E29:E33 <br> LapseAdjTrend $_{\text {st }}$ is from Global Assumptions!D36 <br> LapseAdjMkt ${ }_{\text {st }}$ is from Global Assumptions!D37 <br> InitRefPrem is from Global Assumptions!C24 <br> LapseAdjSale $_{\text {st }}$ is from Global Assumptions!D38 | Baseline standard lives lapse rates adjusted to reflect higher anticipated lapses due to rate increases exceeding claim trend and renewal rates exceeding the market new business rate |

## Pre-Funding.xls - DBPR Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| C14:C43 | Impaired Lives Base Lapse Rates used in Pricing $\left(\mathrm{q}_{\mathrm{x}(\mathrm{im}, \mathrm{pr}}\right)$ |  |  |
| D14:D43 | Probability of Becoming Impaired Used in Pricing ( $\mu_{\mathrm{x}(\mathrm{pr})}$ ) | $\mu_{\mathrm{x}}$, $\mathrm{x} \leq$ DDLP <br> 0, $\mathrm{x}>$ DDLP <br> $\mu_{\mathrm{x}}$ is from the appropriate cell of Global Assumptions!E43:E47 |  |
| E14:E44 | Number of Standard Lives $\left(l_{x(s t)}\right)$ | $\begin{array}{llr} \hline= & 3,000, & x=1 \\ & l_{\text {x-1(st) }} *\left(1-\mu_{\text {x-1(pr) }}\right) *\left(1-\text { q }_{\text {x-1(st, pr) })}\right), & x=2,3,4, \ldots, 31 \end{array}$ | The 3,000 value for duration one is hardcoded and has no impact on the results calculated in the Crude DBPR - Global tab. <br> Values for duration 31 are calculated in order to calculate the lapse rate at duration 30. |

## Pre-Funding.xls - DBPR Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| E45 | Standard Lives Lifetime Exposure | $=\sum_{x=1}^{30} l_{x(s t)}$ |  |
| F14:F44 | Number of Impaired Lives ( $\left.\mathrm{l}_{\mathrm{x}(\mathrm{im})}\right)$ | $\begin{array}{llr} \hline= & 0, & x=1 \\ {\left[l_{\mathrm{x}-1(\mathrm{~m})} *\left(1-\mathrm{q}_{\mathrm{x}-1(\mathrm{~mm}, \mathrm{pr})}\right)\right]+\left[1_{\mathrm{x}-1(\mathrm{st})} * \mu_{\mathrm{x}-1(\mathrm{pr})}\right],} & \mathrm{x}=2,3,4, \ldots, 31 \end{array}$ |  |
| F45 | Impaired Lives Lifetime Exposure | $=\sum_{x=1}^{30} l_{x(i \mathrm{~m})}$ |  |
| G14:G44 | Number of Total Lives $\left(l_{x}\right)$ | $=l_{\text {(sts) }}+l_{x(\text { im })}$ |  |
| G45 | Total Lives Lifetime Exposure <br> (l) | $=\sum_{x=1}^{30} 1_{x}$ |  |
| H14:H43 | Total Lapse Rate Used in Pricing $\left(\mathrm{q}_{\mathrm{x}(\mathrm{pr})}\right)$ | $=1-\left(l_{x+1} / l_{x}\right)$ |  |
| I14:I43 | Duration Factor ( $\mathrm{DF}_{\mathrm{x}}$ ) | From the appropriate cell of Global Assumptions!B77:B81, $=$ $x \leq \text { DDLP }$ <br> 1, $\mathrm{x}>\operatorname{DDLP}$ |  |

## Pre-Funding.xls - DBPR Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| J14:J43 | Accumulated Trend (AccumTrend ${ }_{x}$ ) | $\begin{aligned} & \text { 1, } \begin{array}{l} x=1 \\ \text { AccumTrend }_{x-1} *(1+\text { Trend + ExcessPremTrend }), \\ x=2,3,4, \ldots, 30 \end{array} \end{aligned}$ <br> Trend is from Global Assumptions!D21 |  |
| K14:K43 | Discount Factor $\left(v_{x}\right)$ | $=1 /(1+\text { RsvDiscRate })^{x}$ |  |
| L14:L44 | Premium Age Factor $\left(\mathrm{PAF}_{\mathrm{x}}\right)$ | $=\begin{array}{lr} 1, & x=1 \\ & \operatorname{PAF}_{x-1} *(1+\text { PremGrowthAge }), \end{array} \quad x=2,3,4, \ldots, 30$ <br> PremGrowthAge is from Global Assumptions!C25 |  |
| M14:M43 | Standard Lives Pricing Claims $\left(\mathrm{C}_{\mathrm{x}(\mathrm{st}, \mathrm{pr})}\right)$ | $\begin{array}{\|ll}  & \text { InitRefClaims }_{\mathrm{st}} *\{1+[(\text { ExpPrem / InitRefPrem })-1] \\ & \left.* \text { MorbAdj }_{\mathrm{st}}\right\} * \mathrm{DF}_{\mathrm{x}} *(1+\text { Trend })^{\mathrm{x}-1} * \text { PAF }_{\mathrm{x}} * 12, \end{array} \mathrm{x} \leq \text { DDLP }$ | Note that this is per member per year rather than per member per month. |

## Pre-Funding.xls - DBPR Assumptions

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| M45 | Standard Lives Lifetime Pricing Claims | $=\sum_{x=1}^{30} \mathrm{C}_{\mathrm{x}(\mathrm{st}, \mathrm{pr})}$ |  |  |
| N14:N43 | Impaired Lives Pricing Claims $\left(\mathrm{C}_{\mathrm{x}(\mathrm{im}, \mathrm{pr})}\right)$ | $=\text { InitRefClaims }_{\text {im }} *\left(1+\text { Trend }^{x}{ }^{\mathrm{x}-1} * \text { PAF }_{\mathrm{x}} * 12\right.$ <br> Trend is from Global Assumptions!D21 |  |  |
| N45 | Impaired Lives Lifetime Pricing Claims | $=\sum_{x=1}^{30} C_{x(i m, p r)}$ |  |  |
| O14:O43 | Weighted Average Pricing Claims $\left(\mathrm{C}_{\mathrm{x}(\mathrm{pr})}\right)$ | $=\left[\left(\mathrm{l}_{\mathrm{x}(\mathrm{st})} * \mathrm{C}_{\mathrm{x}(\mathrm{st})}\right)+\left(\mathrm{l}_{\mathrm{x}(\mathrm{im})} * \mathrm{C}_{\mathrm{x}(\mathrm{im})}\right)\right] / \mathrm{l}_{\mathrm{x}}$ |  |  |
| O45 | Lifetime Weighted Average Pricing Claims | $=\sum_{\mathrm{x}=1}^{30} \mathrm{C}_{\mathrm{x}(\mathrm{pr})}$ |  |  |
| O46 | Lifetime Discounted Pricing Claims | $=\sum_{\mathrm{x}=1}^{30} \mathrm{l}_{\mathrm{x}} * \mathrm{C}_{\mathrm{x}(\mathrm{pr})} * \mathrm{v}_{\mathrm{x}}$ |  |  |
| P14:P43 | Durational Rate Increase (DRI ${ }^{\text {x }}$ ) | $\begin{aligned} = & 0, \\ & \text { DRAssump }_{x}, \end{aligned}$ | $\begin{array}{r} x=1 \\ x=2,3,4, \ldots, 30 \end{array}$ |  |

## Pre-Funding.xls - DBPR Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| Q14:Q44 | Accumulated Durational Rate Increase (AccumDRI ${ }_{x}$ ) | $\begin{array}{lr} 1, & x=1 \\ & \text { AccumDRI }_{x-1} *\left(1+\text { DRI }_{x}\right), \end{array} \quad x=2,3,4, \ldots, 31$ |  |
| R14:R43 | Pricing Net Premium $\left(\mathrm{P}_{\mathrm{x}(\mathrm{pr})}\right)$ |  |  |
| R45 | Lifetime Discounted Pricing Net Premium | $=\sum_{\mathrm{x}=1}^{30} \mathrm{l}_{\mathrm{x}} * \mathrm{P}_{\mathrm{x}(\mathrm{pr})} * \mathrm{v}_{\mathrm{x}}$ | Should equal Lifetime Discounted Pricing Claims |
| S14:S43 | Weighted Average Pricing Claims Less Pricing Net Premium (CminusP ${ }_{\mathrm{x}(\mathrm{pr})}$ ) | $=\mathrm{C}_{\mathrm{x}(\mathrm{pr})}-\mathrm{P}_{\mathrm{x}(\mathrm{pr})}$ |  |

## Pre-Funding.xls - DBPR Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| T14:T43 | Claim Reserve $\left(\mathrm{SV}_{\mathrm{x}}\right)$ | $\begin{aligned} & 0, \\ & {\left[\left(l_{\mathrm{x}+1} * \text { CminusP }_{\mathrm{x}+1(\mathrm{pr})}\right)+\mathrm{SV}_{\mathrm{x}+1}\right] /(1+\operatorname{RsvDiscRate}),} \\ & x=1,2,3, \ldots, 29 \end{aligned}$ |  |
| U14:U43 | Claim Reserve as a Percentage of Pricing Claims $\left(\% \mathrm{SV}_{\mathrm{x}}\right)$ | $=\mathrm{SV}_{\mathrm{x}} / \mathrm{l}_{\mathrm{x}} / \mathrm{C}_{\mathrm{x}(\mathrm{pr})}$ |  |
| V14:V43 | Change in Reserve as a Percentage of Pricing Claims $\left(\Delta \% V_{x}\right)$ | $\begin{array}{lr} \% \mathrm{SV}_{\mathrm{x}}, & \mathrm{x}=1 \\ & \left(\mathrm{SV}_{\mathrm{x}}-\mathrm{SV}_{\mathrm{x}-1}\right) / \mathrm{l}_{\mathrm{x}} / \mathrm{C}_{\mathrm{x}(\mathrm{pr}),}, \end{array} \mathrm{x}=2,3,4, \ldots, 30$ |  |
| W14:W43 | Change in Reserve as a Percentage of Pricing Claims, Adjusting for Interest at the Reserve Discount Rate | $\begin{array}{rlr} = & \% \mathrm{SV}_{\mathrm{x}}, & \mathrm{x}=1 \\ & \left\{\mathrm{SV}_{\mathrm{x}}-\left[(1+\text { RsvDiscRate }) * \mathrm{SV}_{\mathrm{x}-1}\right]\right\} / l_{\mathrm{x}} / \mathrm{C}_{\mathrm{x}(\mathrm{pr})}, \mathrm{x}=2,3,4, \ldots, 30 \end{array}$ |  |
| X14:X43 | Change in Reserve as a Percentage of Pricing Claims, Adjusting for Interest at the Reserve Earnings Rate | $\begin{array}{rlr} = & \% \mathrm{SV}_{\mathrm{x}}, & \mathrm{x}=1 \\ & \left\{\mathrm{SV}_{\mathrm{x}}-\left[\left(1+\text { Return\%) } * \mathrm{SV}_{\mathrm{X}-1}\right]\right\} / \mathrm{l}_{\mathrm{x}} / \mathrm{C}_{\mathrm{x}(\mathrm{pr}),},\right. & \mathrm{x}=2,3,4, \ldots, 30 \end{array}$ |  |

## Pre-Funding.xls - DBPR Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| Y14:Y43 | Per Policy Expense Rate ( $\operatorname{Exp}_{\text {Pol(x) })}$ ) | From the appropriate cell of Global Assumptions!:B70:B74 |  |
| Y45 | Lifetime Average Per Policy Expense Rate | $=\left(\sum_{\mathrm{x}=1}^{30} \mathrm{l}_{\mathrm{x}} * \operatorname{Exp}_{\operatorname{Pol}(\mathrm{x})}\right) / \mathrm{l}$ |  |
| Y46 | Lifetime Per Policy <br> Expenses as a Percentage of Lifetime Pricing Net Premiums, Applied to FirstDuration Pricing Net Premium | $=\left[\left(\sum_{\mathrm{i}=1}^{30} \mathrm{l}_{\mathrm{i}} * \operatorname{Exp}_{\mathrm{Pol(i)}(\mathrm{i}}\right) /\left(\sum_{\mathrm{j}=1}^{30} \mathrm{l}_{\mathrm{j}} * \mathrm{P}_{\mathrm{j}(\mathrm{pr})}\right)\right] * \mathrm{P}_{1(\mathrm{pr})}$ |  |
| Z14:Z43 | Percentage-of-Claims <br> Expense Rate <br> (Exp\%C(x)) | From the appropriate cell of Global Assumptions!C70:C74 |  |
| Z45 | Lifetime Average <br> Percentage-of-Claims <br> Expense Rate | $=\left(\sum_{\mathrm{i}=1}^{30} \mathrm{l}_{\mathrm{i}} * \operatorname{Exp} \% \mathrm{C(i)} * \mathrm{C}_{\mathrm{i}(\mathrm{pr})}\right) /\left(\sum_{\mathrm{j}=1}^{30} \mathrm{l}_{\mathrm{j}} * \mathrm{C}_{\mathrm{j}(\mathrm{pr})}\right)$ | Weighted by claims. |

## Pre-Funding.xls - DBPR Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| Z46 | Lifetime Claim-Based <br> Expenses as a Percentage of <br> Lifetime Pricing Net <br> Premiums, Applied to the Ratio of First-Duration Pricing Net Premium to First-Duration Pricing Claims | $=\left[\left(\sum_{i=1}^{30} \mathrm{l}_{\mathrm{i}} * \operatorname{Exp} \%(\mathrm{i}) * \mathrm{C}_{\mathrm{i}(\mathrm{pr})}\right) /\left(\sum_{\mathrm{j}=1}^{30} \mathrm{l}_{\mathrm{j}} * \mathrm{P}_{\mathrm{j}(\mathrm{pr})}\right)\right] * \mathrm{P}_{1(\mathrm{pr})} / \mathrm{C}_{1(\mathrm{pr})}$ |  |
| AA14:AA43 | Base Commission Rate $\left(\right.$ Comm $\left._{\text {B(x) }}\right)$ | From the appropriate cell of Global Assumptions!D70:D74 |  |
| AA45 | Lifetime Average Base Commission Rate | $=\left(\sum_{\mathrm{x}=1}^{30} \mathrm{l}_{\mathrm{x}} * \operatorname{Comm}_{\mathrm{B}(\mathrm{x})}\right) / \mathrm{l}$ | Weighted by enrollment. |
| AB14:AB43 | Renewal Commission Rate $\left(\operatorname{Comm}_{\mathrm{R}(\mathrm{x})}\right)$ | From the appropriate cell of Global Assumptions!E70:E74 |  |
| AB45 | Lifetime Average Renewal Commission Rate | $=\left(\sum_{\mathrm{i}=1}^{30} \mathrm{l}_{\mathrm{i}} * \operatorname{Comm}_{\mathrm{R}(\mathrm{i})} * \mathrm{P}_{\mathrm{i}(\mathrm{pr})}\right) /\left(\sum_{\mathrm{j}=1}^{30} \mathrm{l}_{\mathrm{j}} * \mathrm{P}_{\mathrm{j}(\mathrm{pr})}\right)$ | Weighted by pricing net premium. |
| AC14:AC43 | Other Premium-Related Expense Rate (Expoth\%P(x)) | From the appropriate cell of Global Assumptions!F70:F74 |  |

## Pre-Funding.xls - DBPR Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AC45 | Lifetime Average Other Premium-Related Expense Rate | $=\left(\sum_{i=1}^{30} l_{\mathrm{i}} * \operatorname{Expoth\% } \%(\mathrm{i}) * \mathrm{P}_{\mathrm{i}(\mathrm{pr})}\right) /\left(\sum_{\mathrm{j}=1}^{30} \mathrm{l}_{\mathrm{j}} * \mathrm{P}_{\mathrm{j}(\mathrm{pr})}\right)$ | Weighted by pricing net premium. |
| AD14:AD43 | Total Premium-Related <br> Expense Rate as a <br> Percentage of Pricing Gross <br> Premium <br> $\left(\operatorname{Exp}_{T o t \% \mathrm{P}(\mathrm{x})}\right)$ | $\begin{aligned} = & \left\{\left(\operatorname{Comm}_{\mathrm{B}(\mathrm{x})} * \text { AccumTrend }_{1} * \text { PAF }_{1}\right)\right. \\ & +\left[\left(\operatorname{Comm}_{\mathrm{R}(\mathrm{x})} *\left(\left(\text { AccumTrend }_{\mathrm{x}} * \operatorname{PAF}_{\mathrm{x}}\right)-\left(\text { AccumTrend }_{1} * \text { PAF }_{1}\right)\right)\right]\right. \\ & \left.+\left(\operatorname{Expoth\% } \% \mathrm{P}(\mathrm{x}) * \text { AccumTrend }_{\mathrm{x}} * \text { PAF }_{\mathrm{x}}\right)\right\} \\ & / \text { AccumTrend }_{\mathrm{x}} / \text { PAF }_{\mathrm{x}} \end{aligned}$ | Trend and aging adjustments are needed to convert from net to gross. |
| AD45 | Lifetime Average Total Premium-Related Expense Rate as a Percentage of Pricing Gross Premium | $=\left(\sum_{i=1}^{30} \mathrm{l}_{\mathrm{i}} * \operatorname{Exp}_{\text {Tot } \% \mathrm{P}(\mathrm{i})} * \mathrm{P}_{\mathrm{i}(\mathrm{pr})}\right) /\left(\sum_{\mathrm{j}=1}^{30} \mathrm{l}_{\mathrm{j}} * \mathrm{P}_{\mathrm{j}(\mathrm{pr})}\right)$ | Weighted by pricing net premium. |
| AE14:AE43 | Per Policy Profit Charge (ProfChg ${ }_{\text {Pol(x) }}$ ) | = AssumProfChg Pol |  |
| AE45 | Lifetime Average Per Policy Profit Charge, Weighted by Enrollment | $=\left(\sum_{x=1}^{30} l_{x} * \operatorname{ProfChg}_{\operatorname{Pol}(\mathrm{x})}\right) / \mathrm{l}$ |  |
| AE46 | Lifetime Per Policy Profit Charges as a Percentage of Lifetime Pricing Net Premiums, Applied to FirstDuration Pricing Net Premium | $=\left[\left(\sum_{\mathrm{i}=1}^{30} \mathrm{l}_{\mathrm{i}} * \operatorname{ProfChg}_{\text {Pol }(\mathrm{i})}\right) /\left(\sum_{\mathrm{j}=1}^{30} \mathrm{l}_{\mathrm{j}} * \mathrm{P}_{\mathrm{j}(\mathrm{pr})}\right)\right] * \mathrm{P}_{1(\mathrm{pr})}$ |  |

## Pre-Funding.xls - DBPR Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AF14:AF43 | Percentage-of-Claims Profit Charge <br> (ProfChg\%C(x)) | = AssumProfChg\% ${ }_{\text {\% }}$ |  |
| AF45 | Lifetime Average <br> Percentage-of-Claims Profit Charge, Weighted by Pricing Claims | $=\left(\sum_{i=1}^{30} 1_{\mathrm{i}} * \operatorname{ProfChg}_{\% \mathrm{C}(\mathrm{i})} * \mathrm{C}_{\mathrm{i}(\mathrm{pr})}\right) /\left(\sum_{\mathrm{j}=1}^{30} 1_{\mathrm{j}} * \mathrm{C}_{\mathrm{j}(\mathrm{pr})}\right)$ |  |
| AF46 | Lifetime Claim-Based Profit Charges as a Percentage of Lifetime Pricing Net Premiums, Applied to the Ratio of First-Duration Pricing Net Premium to First-Duration Pricing Claims | $=\left[\left(\sum_{\mathrm{i}=1}^{30} \mathrm{l}_{\mathrm{i}} * \operatorname{ProfChg}_{\% \mathrm{C}(\mathrm{i})} * \mathrm{C}_{\mathrm{i}(\mathrm{pr})}\right) /\left(\sum_{\mathrm{j}=1}^{30} \mathrm{l}_{\mathrm{j}} * \mathrm{P}_{\mathrm{j}(\mathrm{pr})}\right)\right] * \mathrm{P}_{1(\mathrm{pr})} / \mathrm{C}_{1(\mathrm{pr})}$ |  |
| AG14:AG43 | Percentage-of-Premium <br> Profit Charge <br> (ProfChg ${ }_{\% \mathrm{P}(\mathrm{x})}$ ) | = AssumProfChg\% ${ }_{\text {\% }}$ |  |
| AG45 | Lifetime Average Percentage-of-Premium Profit Charge | $=\left(\sum_{i=1}^{30} l_{\mathrm{i}} * \text { ProfChg }_{\% \mathrm{P}(\mathrm{i})} * \mathrm{P}_{\mathrm{i}(\mathrm{pr})}\right) /\left(\sum_{\mathrm{j}=1}^{30} \mathrm{l}_{\mathrm{j}} * \mathrm{P}_{\mathrm{j}(\mathrm{pr})}\right)$ |  |

## Pre-Funding.xls - DBPR Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AH14:AH43 | Pricing Gross Premium $\left(\mathrm{GP}_{\mathrm{x}(\mathrm{pr})}\right)$ |  |  |
| AH45 | Lifetime Pricing Gross Premium | $=\sum_{\mathrm{x}=1}^{30} \mathrm{GP}_{\mathrm{x}(\mathrm{pr})}$ |  |
| AI14:AI43 | Paid Loss Ratio (PaidLR ${ }_{x}$ ) | $=\mathrm{C}_{\mathrm{x}(\mathrm{pr})} / \mathrm{GP}_{\mathrm{x}(\mathrm{pr})}$ |  |
| AJ14:AJ43 | Incurred Loss Ratio ( $\mathrm{IncLR}_{\mathrm{x}}$ ) | $=\left[\mathrm{C}_{\mathrm{x}(\mathrm{pr})}+\left(\Delta \% \mathrm{SV}_{\mathrm{x}} * \mathrm{C}_{\mathrm{x}(\mathrm{pr})}\right)\right] / \mathrm{GP}_{\mathrm{x}(\mathrm{pr})}$ |  |
| AM14:AM43 | Total Pricing Net Premium $\left(\mathrm{P}_{\mathrm{Tot}, \mathrm{x}(\mathrm{pr})}\right)$ | $=\mathrm{l}_{\mathrm{x}} * \mathrm{P}_{\mathrm{x}(\mathrm{pr})}$ |  |

## Pre-Funding.xls - DBPR Assumptions

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| AN14:AN43 | Total Pricing Claims ( $\mathrm{C}_{\text {Tot, } \mathrm{x}(\mathrm{pr})}$ ) | $=l_{\mathrm{x}} * \mathrm{C}_{\mathrm{x}(\mathrm{pr})}$ |  |  |
| AO14:AO43 | Total Reserve $\left(\mathrm{SV}_{\mathrm{Tot}, \mathrm{x}}\right)$ | $=\% \mathrm{SV}_{\mathrm{x}} * \mathrm{C}_{\text {Tot, } \mathrm{X} \text { (pr) }}$ |  | Note that this is identically equal to Claim Reserve calculated in cells T14:T43. |
| AP14:AP43 | Change in Total Reserve $\left(\Delta \mathrm{SV}_{\mathrm{Tot}, \mathrm{x}}\right)$ | $\begin{aligned} = & \mathrm{SV}_{\mathrm{Tot}, \mathrm{x},}, \\ & \mathrm{SV}_{\mathrm{Tot}, \mathrm{x}}-\mathrm{SV}_{\mathrm{Tot}, \mathrm{x}-1}, \end{aligned}$ | $\begin{array}{r} x=1 \\ x=2,3,4, \ldots, 30 \end{array}$ |  |
| AQ14:AQ43 | Interest on Total Reserve ( RsvInt $_{\text {Tot, }, \mathrm{x}}$ ) | $\begin{aligned} = & 0, \\ & \mathrm{SV}_{\text {Tot, , }-1} \end{aligned} * \text { RsvDiscRate, }$ | $\begin{array}{r} x=1 \\ x=2,3,4, \ldots, 30 \end{array}$ |  |
| AR14:AR43 | Total Net Pricing Gain | $=\mathrm{P}_{\text {Tot, }, \mathrm{X}(\mathrm{pr})}-\mathrm{C}_{\mathrm{Tot}, \mathrm{X}(\mathrm{pr})}-\Delta \mathrm{SV}_{\text {Tot }, \mathrm{x}}+\mathrm{RsvInt}_{\mathrm{Tot}, \mathrm{x}}$ |  |  |
| AS14:AS43 | Paid Pricing Loss Ratio | $=\mathrm{C}_{\text {Tot, } \mathrm{X}(\mathrm{pr})} / \mathrm{P}_{\text {Tot, } \mathrm{X} \text { (pr) }}$ |  |  |
| AT14:AT43 | Adjusted Pricing Loss Ratio | $=\left(\mathrm{C}_{\text {Tot }, \mathrm{X}(\mathrm{pr})}+\Delta \mathrm{SV}_{\text {Tot }, \mathrm{x}}\right) / \mathrm{P}_{\text {Tot }, \mathrm{x}(\mathrm{pr})}$ |  |  |
| AU14:AU43 | Adjusted Pricing Loss Ratio with Interest | $=\left(\mathrm{C}_{\text {Tot, } \mathrm{X}(\mathrm{pr})}+\Delta \mathrm{SV}_{\text {Tot, } \mathrm{X}}-\mathrm{RsvInt}_{\text {Tot, } \mathrm{x}}\right) / \mathrm{P}_{\text {Tot, } \mathrm{X}(\mathrm{pr})}$ |  |  |
| AM45 | Lifetime Total Pricing Net Premium $\left(\mathrm{P}_{\text {Tot(pr) }}\right)$ | $=\sum_{\mathrm{x}=1}^{30} \mathrm{P}_{\mathrm{Tot}, \mathrm{x}(\mathrm{pr})}$ |  |  |

## Pre-Funding.xls - DBPR Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AN45 | Lifetime Total Pricing Claims $\left(\mathrm{C}_{\text {Tot(pr) }}\right)$ | $=\sum_{\mathrm{x}=1}^{30} \mathrm{C}_{\mathrm{Tot}, \mathrm{x}(\mathrm{pr})}$ |  |
| AO45 | Lifetime Total Reserve | $=\sum_{\mathrm{x}=1}^{30} \mathrm{SV}_{\mathrm{Tot}, \mathrm{x}}$ |  |
| AP45 | Lifetime Total Change in Reserve $\left(\Delta S V_{\text {Tot }}\right)$ | $=\sum_{\mathrm{x}=1}^{30} \Delta \mathrm{SV}_{\mathrm{Tot}, \mathrm{x}}$ |  |
| AQ45 | Lifetime Total Interest on Reserve $\left(\text { Rsvint }_{T o t}\right)$ | $=\sum_{x=1}^{30} \operatorname{RsvInt}_{\text {Tot }, \mathrm{x}}$ |  |
| AR45 | Lifetime Total Net Pricing Gain | $=\mathrm{P}_{\text {Tot(pr) }}-\mathrm{C}_{\text {Tot(pr) }}-\Delta \mathrm{SV}_{\text {Tot }}+\mathrm{RsvInt}_{\text {Tot }}$ | If all of the formulas are set up correctly, this will equal zero. |
| AS45 | Lifetime Paid Pricing Loss Ratio | $=\mathrm{C}_{\text {Tot(pr) }} / \mathrm{P}_{\text {Tot(pr) }}$ |  |
| AT45 | Lifetime Adjusted Pricing Loss Ratio | $=\left(\mathrm{C}_{\text {Tot(pr) }}+\Delta \mathrm{SV}_{\text {Tot }}\right) / \mathrm{P}_{\text {Tot(pr) }}$ |  |
| AU45 | Lifetime Adjusted Pricing Loss Ratio with Interest | $=\left(\mathrm{C}_{\text {Tot(pr) }}+\Delta \mathrm{SV}_{\text {Tot }}-\mathrm{RsvInt}_{\text {Tot }}\right) / \mathrm{P}_{\text {Tot(pr) }}$ |  |

## Pre-Funding.xls - DBPR Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AM46 | Present Value of Total Pricing Net Premiums (PVNetPrem) | $=\mathrm{NPV}_{\text {RsvDiscRate }}\left(\mathrm{P}_{\text {Tot, } \mathrm{X}(\mathrm{Pr})}\right), \quad$ where NPV is taken over $\mathrm{x}=1,2,3, \ldots, 30$ | In other places in the model, present values are adjusted for onehalf of one year's interest. This is not done here because this section only tests for accuracy of formulas. |
| AN46 | Present Value of Total Pricing Claims (PVClaims) | $=\mathrm{NPV}_{\text {RsvDiscRate }}\left(\mathrm{C}_{\text {Tot, } \mathrm{x}(\mathrm{pr})}\right), \quad$ where NPV is taken over $\mathrm{x}=1,2,3, \ldots, 30$ |  |
| AO46 | Present Value of Total Reserves | $=N P V_{\text {RsvDiscRate }}\left(S V_{\text {Tot, }, ~}\right), \quad$ where NPV is taken over $\mathrm{x}=1,2,3, \ldots, 30$ |  |
| AP46 | Present Value of Change in Total Reserves (PV $\Delta$ Rsv) | $=\operatorname{NPV}_{\text {RsvDiscRate }}\left(\Delta \mathrm{SV}_{\text {Tot, } \mathrm{x}}\right), \quad$ where NPV is taken over $\mathrm{x}=1,2,3, \ldots, 30$ |  |
| AQ46 | Present Value of Interest on Total Reserves (PVRsvInt) | $=N P V_{\text {RsvDiscRate }}\left(\operatorname{RsvInt}_{\text {Tot, }, ~}\right)$, where NPV is taken over $\mathrm{x}=1,2,3, \ldots, 30$ |  |
| AR46 | Present Value of Total Net Pricing Gains | $=$ PVNetPrem - PVClaims - PV $\Delta$ Rsv + PVRsvInt |  |

## Pre-Funding.xls - DBPR Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AS46 | Present Value of Lifetime <br> Paid Pricing Loss Ratio | = PVClaims / PVNetPrem |  |
| AT46 | Present Value of Lifetime Adjusted Pricing Loss Ratio | $=($ PVClaims + PVARsv) / PVNetPrem |  |
| AU46 | Present Value of Lifetime Adjusted Pricing Loss Ratio with Interest | $=($ PVClaims + PV $\Delta$ Rsv - PVRsvInt $) /$ PVNetPrem |  |
| AX14:AX43 | Total Pricing Gross Premium $\left(\mathrm{GP}_{\text {Tot, } \mathrm{x}(\mathrm{pr})}\right)$ | $=\mathrm{l}_{\mathrm{x}} * \mathrm{GP}_{\mathrm{x}(\mathrm{pr})}$ |  |
| AY14:AY43 | Total Pricing Claims ( $\mathrm{C}_{\mathrm{Tot}, \mathrm{x}(\mathrm{pr})}$ ) | $=\mathrm{l}_{\mathrm{x}} * \mathrm{C}_{\mathrm{x}(\mathrm{pr})}$ | Identically equal to the values in cells <br> AO14:AO43 |
| AZ14:AZ43 | Total Net Reserve ( $\mathrm{NetSV}_{\text {Tot, }, \mathrm{x}}$ ) | $=\% \mathrm{SV}_{\mathrm{x}} * \mathrm{C}_{\text {Tot, } \mathrm{X} \text { (pr) }}$ | Identically equal to the values in cells AP14:AP43 |
| BA14:BA43 | Total Reserve with Margin $\left(\mathrm{SV}_{\text {Tot, } \mathrm{x}}\right)$ | $=\operatorname{NetSV}_{\text {Tot, } \mathrm{X}} *(1+$ ReqRsvMargin $)$ |  |
| BB14:BB43 | Total Per Policy Expenses ( $\operatorname{Exp}_{\text {TotPol, }}$ ) | $=12 * 1_{\mathrm{x}} * \operatorname{Exp}_{\text {Pol( } \mathrm{x})}$ |  |

## Pre-Funding.xls - DBPR Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| BC14:BC43 | Total Percentage-of-Claims Expenses ( Exp $_{\text {Tot\% }}$ C, x$)$ | $=\mathrm{C}_{\text {Tot, } \mathrm{X}(\mathrm{pr})} * \operatorname{Exp} \% \mathrm{C}(\mathrm{x})$ |  |
| BD14:BD43 | Total Percentage-ofPremium Expenses ( $\operatorname{Exp}_{\text {Tot } \% \mathrm{P}, \mathrm{x}}$ ) | $\begin{aligned} = & \left(\mathrm{GP}_{1(\mathrm{pr})} * \mathrm{l}_{\mathrm{X}} * \operatorname{Comm}_{\mathrm{B}(\mathrm{x})}\right)+\left[\left(\mathrm{GP}_{\mathrm{x}(\mathrm{pr})}-\mathrm{GP}_{1(\mathrm{pr})}\right) * \mathrm{l}_{\mathrm{x}} * \operatorname{Comm}_{\mathrm{R}(\mathrm{x})}\right] \\ & +\left(\mathrm{GP}_{\mathrm{x}(\mathrm{pr})} * \mathrm{l}_{\mathrm{x}} * \operatorname{Exp}_{0+\mathrm{th}} \mathrm{PP(x)}\right) \end{aligned}$ |  |
| BE14:BE43 | Total Expenses ( $\operatorname{Exp}_{T o t, \mathrm{x}}$ ) | $=\operatorname{Exp}_{\text {TotPol, } \mathrm{X}}+\operatorname{Exp}_{\text {Tot\% } \% \text {, } \mathrm{x}}+\operatorname{Exp}_{\text {Tot\%P, } \mathrm{x}}$ |  |
| BF14:BF43 | Change in Total Reserve $\left(\Delta \mathrm{SV}_{\mathrm{Tot}, \mathrm{x}}\right)$ | $=\begin{array}{lr} \mathrm{SV}_{\mathrm{Tot}, \mathrm{x}, \mathrm{x}} & \mathrm{x}=1 \\ \mathrm{SV}_{\mathrm{Tot}, \mathrm{x}}-\mathrm{SV}_{\mathrm{Tot}, \mathrm{x}-1}, & \mathrm{x}=2,3,4, \ldots, 30 \end{array}$ |  |
| BG14:BG43 | Interest on Total Reserve ( RsvInt $_{\text {Tot, }, \mathrm{x}}$ ) | $\begin{array}{llr} \hline= & 0, & x=1 \\ & \text { SV }_{\text {Tot, } \mathrm{x}-1} * \text { RsvDiscRate, } & \mathrm{x}=2,3,4, \ldots, 30 \end{array}$ |  |
| BH14:BH43 | Total Gross Pricing Gain ( Gain $_{\text {Tot, },}$ ) | $=\mathrm{GP}_{\text {Tot, } \mathrm{X}(\mathrm{pr})}-\mathrm{C}_{\text {Tot, } \mathrm{X}(\mathrm{pr})}-\operatorname{Exp}_{\text {Tot, }, \mathrm{x}}-\Delta \mathrm{SV}_{\text {Tot, } \mathrm{x}}+\mathrm{RsvInt}_{\text {Tot, } \mathrm{X}}$ |  |
| BI14:BIJ43 | Total Gross Pricing Margin | $=$ Gain $_{\text {Tot, } \mathrm{X}} / \mathrm{GP}_{\text {Tot, } \mathrm{X} \text { (pr) }}$ |  |
| BJ14:BJ43 | Total Interest Spread (IntSpread ${ }_{T o t, \mathrm{X}}$ ) | $=\begin{array}{lr} 0, & x=1 \\ \text { SV }_{\text {Tot }, \mathrm{x}-1} * \text { (Return\% - RsvDiscRate) }, & \mathrm{x}=2,3,4, \ldots, 30 \end{array}$ |  |

## Pre-Funding.xls - DBPR Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| BK14:BK43 | Total Gross Pricing Gain with Interest Spread (GainWithSpread $_{\text {Tot, } \mathrm{x}}$ ) | $=$ Gain $_{\text {Tot, } \mathrm{X}}+\mathrm{IntSpread}_{\text {Tot, } \mathrm{X}}$ |  |
| BL14:BL43 | Total Per Policy Profit Charges ${\text { ( } \text { ProfChg }_{\text {TotPol, },} \text { ) }}$ | $=\mathrm{l}_{\mathrm{X}} * \operatorname{ProfChg}_{\text {Pol }(\mathrm{x})} * 12$ |  |
| BM14:BM43 | Total Percentage-of-Claims Profit Charges <br> (ProfChg ${ }_{\text {Tot\% } \% \text {, } \mathrm{x}}$ ) | $=\mathrm{C}_{\text {Tot, } \mathrm{X}(\mathrm{pr})}$ * ProfChg $_{\% \mathrm{C}(\mathrm{x})}$ |  |
| BN14:BN43 | Total Percentage-ofPremium Profit Charges (ProfChg ${ }_{\text {Tot\%P,x) }}$ ) | $=\mathrm{GP}_{\text {Tot, } \mathrm{x}(\mathrm{pr})} *$ ProfChg $_{\% \mathrm{P} \mathrm{P})}$ |  |
| BO14:BO43 | Total Profit Charges (ProfChg ${ }_{\text {Tot, }, \text { ) }}$ ) | $=$ ProfChg $_{\text {TotPol, } \mathrm{X}}+$ ProfChg $_{\text {Tot\%C,x }}+$ ProfChg $_{\text {Tot\%P,x }}$ |  |
| BP14:BP43 | Total Profit Charges as a Percentage of Total Pricing Gross Premium | $=$ ProfChg $_{\text {Tot, } \mathrm{X}} / \mathrm{GP}_{\text {Tot, } \mathrm{X}(\mathrm{pr})}$ |  |
| BQ14:BQ43 | Total Gross Pricing Gain Less Total Profit Charges (GainLessProfChg ${ }_{\text {Tot, }, \mathrm{x}}$ ) | $=$ NetGain $_{\text {Tot, } \mathrm{X}}+$ IntSpread $_{\text {Tot, } \mathrm{X}}$ |  |

## Pre-Funding.xls - DBPR Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| BR14:BR43 | Total Gross Pricing Gain Less Total Profit Charges as a Percentage of Total Pricing Gross Premium | $=$ GainLessProfChg $_{\text {Tot, }} / \mathrm{GP}_{\text {Tot, } \mathrm{X}(\mathrm{pr})}$ |  |
| BS14:BS43 | Total Pricing Gain Net of Profit Charges and Interest Spread (NetGain ${ }_{\text {Tot, }, \text { ) }}$ | $=$ Gain $_{\text {Tot, }, ~}-$ ProfChg $_{\text {TotPol, } \mathrm{x}}-$ ProfChg $_{\text {Tot\%C,x }}-$ ProfChg $_{\text {Tot\%P,x }}$ |  |
| BT14:BT43 | Pricing Margin Net of Profit Charges | $=\operatorname{NetGain}_{\text {Tot, } \mathrm{X}} / \mathrm{GP}_{\text {Tot, } \mathrm{X} \text { (pr) }}$ |  |
| BU14:BU43 | Paid Gross Loss Ratio | $=\mathrm{C}_{\text {Tot, } \mathrm{X}(\mathrm{pr})} / \mathrm{GP}_{\text {Tot, } \mathrm{X} \text { (pr) }}$ |  |
| BV14:BV43 | Adjusted Gross Loss Ratio | $=\left(\mathrm{C}_{\text {Tot, } \mathrm{x}(\mathrm{pr})}+\Delta \mathrm{SV}_{\text {Tot, } \mathrm{X}}\right) / \mathrm{GP}_{\text {Tot, } \mathrm{X}(\mathrm{pr})}$ |  |
| BW14:BW43 | Adjusted Gross Loss Ratio with Interest | $=\left(\mathrm{C}_{\mathrm{Tot}, \mathrm{x}(\mathrm{pr})}+\Delta \mathrm{SV}_{\mathrm{Tot}, \mathrm{x}}-\mathrm{RsvInt}_{\mathrm{Tot}, \mathrm{x}}\right) / \mathrm{GP}_{\mathrm{Tot}, \mathrm{X}(\mathrm{pr})}$ |  |
| AX45 | Lifetime Total Pricing Gross Premium $\left(\mathrm{GP}_{\mathrm{Tot}(\mathrm{pr})}\right)$ | $=\sum_{\mathrm{x}=1}^{30} \mathrm{GP}_{\mathrm{Tot}, \mathrm{x}(\mathrm{pr})}$ |  |
| AY45 | Lifetime Total Pricing Claims $\left(\mathrm{C}_{\text {Tot(pr) }}\right)$ | $=\sum_{x=1}^{30} \mathrm{C}_{\mathrm{Tot}, \mathrm{x}(\mathrm{pr})}$ |  |

## Pre-Funding.xls - DBPR Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| BB45 | Lifetime Total Per Policy Expenses ( $\operatorname{Exp}_{\text {TotPol }}$ ) | $=\sum_{\mathrm{x}=1}^{30} \operatorname{Exp}_{\mathrm{TotPol}, \mathrm{x}}$ |  |
| BC45 | Lifetime Total Percentage-of-Claims Expenses ( $\operatorname{Exp}_{\text {Tot\% }}$ ) | $=\sum_{x=1}^{30} \operatorname{Exp}_{\text {Tot\%C,x }}$ |  |
| BD45 | Lifetime Total Percentage-of-Premium Expenses ( Exp $_{\text {Tot\% }}$ ) | $=\sum_{\mathrm{x}=1}^{30} \operatorname{Exp}_{\mathrm{Tot} \% \mathrm{P}, \mathrm{x}}$ |  |
| BE45 | Lifetime Total Expenses $\left(\text { Exp }_{\text {Tot }}\right)$ | $=\sum_{\mathrm{x}=1}^{30} \operatorname{Exp}_{\mathrm{Tot}, \mathrm{x}}$ |  |
| BF45 | Lifetime Change in Total Reserve $\left(\Delta S V_{\text {Tot }}\right)$ | $=\sum_{\mathrm{x}=1}^{30} \Delta \mathrm{SV}_{\text {Tot }, \mathrm{x}}$ | Should equal zero. |
| BG45 | Lifetime Interest on Total Reserve <br> (RsvInt ${ }_{\text {Tot }}$ ) | $=\sum_{x=1}^{30} \operatorname{RsvInt}_{\text {Tot }, \mathrm{x}}$ |  |
| BH45 | Lifetime Total Gross Pricing Gain (Gain ${ }_{\text {Tot }}$ ) | $=\sum_{\mathrm{x}=1}^{30} \text { Gain }_{\text {Tot }, \mathrm{x}}$ |  |

## Pre-Funding.xls - DBPR Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| BI45 | Lifetime Total Gross Pricing Margin | $=\mathrm{Gain}_{\text {Tot }} / \mathrm{GP}_{\text {Tot(pr) }}$ |  |
| BJ45 | Lifetime Total Interest Spread | $=\sum_{x=1}^{30} \text { IntSpread }_{\text {Tot }, \mathrm{x}}$ |  |
| BK45 | Lifetime Total Gross Pricing Gain with Interest Spread | $=\sum_{\mathrm{x}=1}^{30} \text { GainWithSpread }_{\mathrm{Tot}, \mathrm{x}}$ |  |
| BL45 | Lifetime Total Per Policy Profit Charges ( ProfChg $_{\text {TotPol }}$ ) | $=\sum_{x=1}^{30} \text { ProfChg }_{\text {TotPol }, \mathrm{x}}$ |  |
| BM45 | Lifetime Total Percentage-of-Claims Profit Charges (ProfChg ${ }_{\text {Tot } \% \text { }}$ ) | $=\sum_{x=1}^{30} \text { ProfChg }_{\text {Tot\%C,x }}$ |  |
| BN45 | Lifetime Total Percentage-of-Premium Profit Charges (ProfChg ${ }_{\text {Tot\%P }}$ ) | $=\sum_{\mathrm{x}=1}^{30} \text { ProfChg }_{\text {Tot } \% \mathrm{P}, \mathrm{x}}$ |  |
| BO45 | Lifetime Total Profit Charges <br> (ProfChg $_{\text {Tot }}$ ) | $=\sum_{\mathrm{x}=1}^{30} \operatorname{ProfChg}_{\text {Tot }, \mathrm{x}}$ |  |

## Pre-Funding.xls - DBPR Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| BP45 | Lifetime Total Profit Charges as a Percentage of Total Pricing Gross Premium | $=$ ProfChg $_{\text {Tot }} / \mathrm{GP}_{\text {Tot(pr) }}$ |  |
| BQ45 | Lifetime Total Gross Pricing Gain Less Total Profit Charges (GainLessProfChg $_{\text {Tot }}$ ) | $=\sum_{x=1}^{30} \text { GainLessProfChg }_{\text {Tot, }, \mathrm{x}}$ |  |
| BR45 | Lifetime Total Gross Pricing Gain Less Total Profit Charges, as a Percentage of Total Pricing Gross Premium | $=$ GainLessProfChg $_{\text {Tot }} / \mathrm{GP}_{\text {Tot(pr) }}$ |  |
| BS45 | Lifetime Total Pricing Gain Net of Profit Charges (ExcessGain ${ }_{\text {Tot }}$ ) | $=$ Gain $_{\text {Tot }}-$ ProfChg $_{\text {TotPol }}-$ ProfChg $_{\text {Tot\% }}-$ ProfChg $_{\text {Tot\%P }}$ |  |
| BT45 | Lifetime Pricing Margin Net of Profit Charges | $=\operatorname{NetGain}_{\text {Tot }} / \mathrm{GP}_{\text {Tot(pr) }}$ |  |
| BU45 | Lifetime Paid Gross Loss Ratio | $=\mathrm{C}_{\text {Tot(pr) }} / \mathrm{GP}_{\text {Tot(pr) }}$ |  |
| BV45 | Lifetime Adjusted Gross Loss Ratio | $=\left(\mathrm{C}_{\text {Tot(pr) }}+\Delta \mathrm{SV}_{\text {Tot }}\right) / \mathrm{GP}_{\text {Tot(pr) }}$ |  |

## Pre-Funding.xls - DBPR Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| BW45 | Lifetime Adjusted Gross Loss Ratio with Interest | $=\left(\mathrm{C}_{\text {Tot(pr) }}+\Delta \mathrm{SV}_{\text {Tot }}-\mathrm{RsvInt}_{\text {Tot }}\right) / \mathrm{GP}_{\text {Tot(pr) }}$ |  |
| AX46 | Present Value of Total Pricing Gross Premium (PVGrossPrem) | $=N P V_{\text {RsvDiscRate }}\left(\mathrm{GP}_{\text {Tot, } \mathrm{x}(\mathrm{pr})}\right)$, where NPV is taken over $\mathrm{x}=1,2,3, \ldots, 30$ |  |
| AY46 | Present Value of Total Pricing Claims (PVClaims) | $=\operatorname{NPV}_{\text {RsvDiscRate }}\left(\mathrm{C}_{\text {Tot, } \mathrm{X}(\mathrm{pr})}\right), \quad$ where NPV is taken over $\mathrm{x}=1,2,3, \ldots, 30$ |  |
| BB46 | Present Value of Total Per Policy Expenses <br> (PVExppol) | $=\mathrm{NPV}_{\text {RsvDiscRate }}\left(\right.$ Exp $\left._{\text {TotPol, } \mathrm{x}}\right)$, where NPV is taken over $\mathrm{x}=1,2,3, \ldots, 30$ |  |
| BC46 | Present Value of Total Percentage-of-Claims Expenses <br> (PVExp\%c) | $=\mathrm{NPV}_{\text {RsvDiscRate }}\left(\operatorname{Exp}_{\text {Tot\% } \% \text { c, } \mathrm{x}}\right)$, where NPV is taken over $\mathrm{x}=1,2,3, \ldots, 30$ |  |
| BD46 | Present Value of Total Percentage-of-Premium Expenses (PVExp\%) | $=N P V_{\text {RsvDiscRate }}\left(\operatorname{Exp}_{\text {Tot } \% P, \mathrm{x}}\right)$, where NPV is taken over $\mathrm{x}=1,2,3, \ldots, 30$ |  |

## Pre-Funding.xls - DBPR Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| BE46 | Present Value of Total Expenses <br> (PVExp ${ }_{\text {tot }}$ ) | $=\mathrm{NPV}_{\text {RsvDiscRate }}\left(\operatorname{Exp}_{\text {Tot, } \mathrm{x}}\right), \quad$ where NPV is taken over $\mathrm{x}=1,2,3, \ldots, 30$ |  |
| BF46 | Present Value of Change in Total Reserve (PVASV) | $=\operatorname{NPV}_{\text {RsvDiscRate }}\left(\Delta \mathrm{SV}_{\text {Tot, } \mathrm{x}}\right), \quad$ where NPV is taken over $\mathrm{x}=1,2,3, \ldots, 30$ |  |
| BG46 | Present Value of Interest on Total Reserve (PVRsvInt) | $=\operatorname{NPV}_{\text {RsvDiscRate }}\left(\operatorname{RsvInt}_{\text {Tot, } \mathrm{X}}\right)$, where NPV is taken over $\mathrm{x}=1,2,3, \ldots, 30$ |  |
| BH46 | Present Value of Total Gross Pricing Gain (PVGain) | $\begin{aligned} = & \text { PVGrossPrem }- \text { PVClaims }- \text { PVExp }{ }_{\text {Pol }}-\text { PVExp } \% \text { - PVExp } \% \text { P } \\ & - \text { PV } \Delta \text { SV }+ \text { PVRsvInt } \end{aligned}$ |  |
| BI46 | Present Value of Total Gross Pricing Margin | = PVGain / PVGrossPrem |  |
| BJ46 | Present Value of Total Interest Spread <br> (PVIntSpread) | $=\mathrm{NPV}_{\text {RsvDiscRate }}\left(\operatorname{IntSpread}_{\text {Tot, } \mathrm{x}}\right)$, <br> where NPV is taken over $\mathrm{x}=1,2,3, \ldots, 30$ |  |
| BK46 | Present Value of Total Gross Pricing Gain with Interest Spread (PVGainWithSpread) | $\begin{aligned} & =\text { NPV }_{\text {RsvDiscRate }}\left(\text { GainWithSpread }_{\text {Tot, } \mathrm{x}}\right), \\ & \\ & \text { where } \mathrm{NPV} \text { is taken over } \mathrm{x}=1,2,3, \ldots, 30 \end{aligned}$ |  |

## Pre-Funding.xls - DBPR Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| BL46 | Present Value of Total Per Policy Profit Charges (ProfChg ${ }_{\text {Pol }}$ ) | $=$ NPV $_{\text {RsvDiscRate }}\left(\right.$ ProfChg $\left._{\text {TotPol, } \mathrm{x}}\right)$, <br> where NPV is taken over $x=1,2,3, \ldots, 30$ |  |
| BM46 | Present Value of Total Percentage-of-Claims Profit Charges (ProfChg\% ${ }_{\%}$ ) | $=\mathrm{NPV}_{\text {RsvDiscRate }}\left(\right.$ ProfChg $\left._{\text {Tot\% } \%, \mathrm{x}}\right)$, <br> where NPV is taken over $x=1,2,3, \ldots, 30$ |  |
| BN46 | Present Value of Total <br> Percentage-of-Premium <br> Profit Charges <br> (ProfChg ${ }_{\%}$ ) | $=\mathrm{NPV}_{\text {RsvDiscRate }}\left(\right.$ ProfChg $\left._{\text {Tot\% } \% \mathrm{P}, \mathrm{x}}\right)$, <br> where NPV is taken over $x=1,2,3, \ldots, 30$ |  |
| BO46 | Present Value of Total Profit Charges <br> (PVProfChg) | $=\text { NPV }_{\text {RsvDiscRate }}\left(\text { ProfChg }_{\text {Tot }, \mathrm{X}}\right) \text {, }$ <br> where NPV is taken over $\mathrm{x}=1,2,3, \ldots, 30$ |  |
| BP46 | Present Value of Total <br> Profit Charges as a <br> Percentage of Present Value <br> of Total Pricing Gross <br> Premium | = PVProfChg / PVGrossPrem |  |
| BQ46 | Present Value of Total Gross Pricing Gain Less Total Profit Charges (PVGainLessProfChg) | $\begin{aligned} & =\text { NPV }_{\text {RsvDiscRate }}\left(\text { GainLessProfChg } g_{\text {Tot, } x}\right), \\ & \\ & \text { where } \mathrm{NPV} \text { is taken over } \mathrm{x}=1,2,3, \ldots, 30 \end{aligned}$ |  |

## Pre-Funding.xls - DBPR Assumptions

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| BR46 | Present Value of Total <br> Gross Pricing Gain Less <br> Total Profit Charges, as a <br> Percentage of Present Value <br> of Total Pricing Gross <br> Premium | $=$ PVGainLessProfChg / PVGrossPrem |  |
| BS46 | Present Value of Total <br> Pricing Gain Net of Profit <br> Charges <br> (PVExcessGain) | $=$ PVGain - PVProfChgPol - PVProfChg\%c - PVProfChg\%p |  |
| BT46 | Present Value of Pricing <br> Margin Net of Profit <br> Charges | $=$ PVNetGain / PVGrossPrem |  |
| BU46 | Lifetime Paid Gross Loss <br> Ratio on a Present Value <br> Basis | $=$ PVClaims / PVGrossPrem |  |
| BV46 | Lifetime Adjusted Gross <br> Loss Ratio on a Present <br> Value Basis | $=$ (PVClaims + PV |  |

## Pre-Funding.xls - DBPR Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| BJ47 | Present Value of Total <br> Interest Spread as a <br> Percentage of Present Value <br> of Total Pricing Gross <br> Premium | = PVIntSpread / PVGrossPrem |  |
| BK47 | Present Value of Total Gross Pricing Gain with Interest Spread, as a Percentage of Present Value of Total Pricing Gross Premium | = PVGainWithSpread / PVGrossPrem |  |
| BZ14:CD43 | Composite Expected Paid Loss Ratio (ExpectedPaidLR $\mathrm{R}_{\mathrm{z}, \mathrm{b}}$ ) | $=$ the $z^{\text {th }}$ value in the array of composite paid loss ratios for the $b^{\text {th }}$ block, where z is the appropriate projection year from BY14:BY43 and $b$ is the appropriate block number from BZ13:CD13; the arrays of composite paid loss ratios are found in cells CK46:DN46, DP46:ES46, EU46:FX46, FZ46:HC46, and HE46:IH46, respectively. |  |
| CE14:CI43 | Composite Expected Incurred Loss Ratio (ExpectedIncLR ${ }_{z, \mathrm{~b}}$ ) | $=$ the $\mathrm{z}^{\text {th }}$ value in the array of composite incurred loss ratios for the $\mathrm{b}^{\text {th }}$ block, where z is the appropriate projection year from BY14:BY43 and b is the appropriate block number from BZ13:CD13; the arrays of composite incurred loss ratios are found in cells CK47:DN47, DP47:ES47, EU47:FX47, FZ47:HC47, and HE47:IH47, respectively. |  |

## Pre-Funding.xls - DBPR Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| CK14:DN43 | Premium by Cohort for Block 1 $\left(\mathrm{P}_{\mathrm{z}, \mathrm{x}, 1}\right)$ | $\begin{array}{lr} =\quad \begin{array}{rr} 0, & \mathrm{x}>\mathrm{z} \text { or } \mathrm{z}-\mathrm{x}>19 \\ \text { AgeAdjPremRate } \mathrm{z}_{\mathrm{z}, \mathrm{y}} *\left(\mathrm{l}_{\mathrm{z}, \mathrm{y}, 1(\mathrm{st})}+\mathrm{l}_{\mathrm{z}, \mathrm{y}, 1(\mathrm{im})}\right), & \text { otherwise } \end{array} \end{array}$ <br> AgeAdjPremRate $_{z, y}$ is from the appropriate cell of DBPR1!AX126:BQ155 <br> $\mathrm{l}_{\mathrm{z}, \mathrm{y}, 1 \text { (st) }}$ is from the appropriate cell of DBPR-1!AB51:AU80 $\mathrm{l}_{\text {z,y,1(im) }}$ is from the appropriate cell of DBPR-1!BT51:CM80 | The condition $\mathrm{x}>\mathrm{z}$ is equivalent to $\mathrm{y}<1$, and the condition $\mathrm{z}-\mathrm{x}>19$ is equivalent to $\mathrm{y}>20$. |
| CK46:DN46 | Composite Paid Loss Ratio by Projection Year for Block 1 | $=\begin{array}{ll} 0, & \sum_{\mathrm{x}=1}^{30} \mathrm{P}_{\mathrm{z}, \mathrm{x}, 1}=0 \\ & \left(\sum_{\mathrm{x}=1}^{30} \mathrm{P}_{\mathrm{z}, \mathrm{x}, 1} * \operatorname{PaidLR}_{\mathrm{x}}\right) / \sum_{\mathrm{x}=1}^{30} \mathrm{P}_{\mathrm{z}, \mathrm{x}, 1}, \end{array}$ | As long as the composite premium for the given projection year is nonzero, the composite paid loss ratio for that year is a weighted average of the paid loss ratios over all durations, where the weights are premiums. |
| CK47:DN47 | Composite Incurred Loss Ratio by Projection Year for Block 1 | $=\begin{array}{ll} 0, & \sum_{x=1}^{30} \mathrm{P}_{\mathrm{z}, \mathrm{x}, 1}=0 \\ & \\ & \left(\sum_{\mathrm{x}=1}^{30} \mathrm{P}_{\mathrm{z}, \mathrm{x}, 1} * \operatorname{IncLR}_{\mathrm{x}}\right) / \sum_{\mathrm{x}=1}^{30} \mathrm{P}_{\mathrm{z}, \mathrm{x}, 1}, \end{array}$ | As long as the composite premium for the given projection year is nonzero, the composite incurred loss ratio for that year is a weighted average of the incurred loss ratios over all durations, where the weights are premiums. |

## Pre-Funding.xls - DBPR Assumptions

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| CK48:DN48 | Lifetime Actual Premium <br> for Block 1 | $=12 * \sum_{x=1}^{30} \mathrm{P}_{z, x, 1}$ |  |

Analogous calculations are performed for blocks 2-5 in cells DP14:ES48, EU14:FX48, FZ14:HC48, and HE14:IH48, respectively.

## Pre-Funding.xls - Crude DBPR - Global

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| D6 | Initial Reference Premium | From Global Assumptions!C24 |  |
| D7 | Initial Reference Claim Cost <br> for Standard Lives | From Global Assumptions!D49 |  |
| D8 | Initial Reference Claim Cost <br> for Impaired Lives | From Global Assumptions!D60 |  |
| B12:B41 | Base Lapse Rates for <br> Standard Lives | From the appropriate cell of Global Assumptions!D29:D33 |  |
| C12:C41 | Base Lapse Rates for <br> Impaired Lives | From Global Assumptions!C54 |  |
| D12:D41 | Duration Factor | From the appropriate cell of Global Assumptions!B77:B81 |  |
| E12:E41 | Per Policy Expense Rates | From the appropriate cell of Global Assumptions!B70:B74 |  |
| F12:F41 | Percentage-of-Claims <br> Expense Rates | From the appropriate cell of Global Assumptions!C70:C74 |  |
| G12:G41 | Base Commission Rates | From the appropriate cell of Global Assumptions!D70:D74 |  |
| H12:H41 | Renewal Commission Rates | From the appropriate cell of Global Assumptions!E70:E74 |  |

## Pre-Funding.xls - Crude DBPR - Global

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| J12:J41 | Premium Age Factor ( $\mathrm{PAF}_{\mathrm{x}}$ ) | $\begin{array}{lr} 1, & x=1 \\ \operatorname{PAF}_{x-1} *(1+\text { PremGrowthAge }) & x=2,3,4, \ldots, 30 \end{array}$ <br> PremGrowthAge is from Global Assumptions!C25 |  |
| K12:K41 | Rate of Impairment | From the appropriate cell of Global Assumptions!E43:E47 |  |
| L12:L41 | Durational Rate Increase | From the appropriate cell of DBPR Assumptions!P14:P43 |  |
| O12:041 | Actual Trend <br> (ActTrend ${ }_{z}$ ) | From the appropriate cell of Global Assumptions!B106:B135 |  |
| P12:P41 | Market New Business Rate (MarketRate ${ }_{z}$ ) | $\begin{array}{rlr} = & \mathrm{GP}_{1(\mathrm{pr})} / 12, & \mathrm{z}=1 \\ & \text { MarketRate }_{\mathrm{z}-1} *\left(1+\text { ActTrend }_{\mathrm{z}-1}\right), & \mathrm{z}=2,3,4, \ldots, 30 \end{array}$ <br> $\mathrm{GP}_{1(\mathrm{pr})}$ is from DBPR Assumptions!AH14 |  |
| Q12:Q41 | Company New Business Rate | $=\sum_{b=1}^{5} \text { ComNewBusnRate }_{\mathrm{z}, \mathrm{~b}}$ <br> Note: In this and subsequent formulas on the Crude DBPR-Global tab, whenever a sum is taken over the five blocks, the values are taken from tab DBPR-1 for the first block, from tab DBPR-2 for the second block, etc. | Sum of new business premium rate for projection year z across all five blocks; this and other aggregations of premium rates and lapse rates across blocks implicitly assume that the blocks do not overlap. |

## Pre-Funding.xls - Crude DBPR - Global

$\left.\begin{array}{|l|l|l|l|}\hline \text { Cells } & \text { Description } & \text { Formula } & \text { Comments } \\ \hline \text { T12:AM41 } & \begin{array}{l}\text { Aggregate New Business } \\ \text { Sales by Cohort } \\ \text { (AggSales } \\ \text { z,y }\end{array}\end{array}\right)$

## Pre-Funding.xls - Crude DBPR - Global

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AP51:BI80 | Aggregate Actual Lapse Rates of Impaired Lives by Cohort | $=\sum_{b=1}^{5} \mathrm{q}_{z, \mathrm{y}, \mathrm{~b}(\mathrm{im})}$ |  |
| BL51:CE80 | Aggregate Enrollment of Impaired Lives by Cohort $\left(l_{z, y(i m)}\right)$ | $=\sum_{\mathrm{b}=1}^{5} l_{\text {z,yb(im) }}$ |  |
| BT81:CM81 | Aggregate Exposure of Impaired Lives for Issue Year y | $=\sum_{z=1}^{30} l_{z, y(i m)}$ |  |
| T89:AM118 | Aggregate Standard Lives Claim Levels by Cohort (AggClaims ${ }_{z, y(s t)}$ ) | $=\sum_{b=1}^{5} \mathrm{C}_{\mathrm{z}, \mathrm{y}, \mathrm{~b}(\mathrm{st})}$ | This and the next two tables are duplicates of those at cells T163:CE192. |
| AP89:BI118 | Aggregate Impaired Lives Claim Levels by Cohort (AggClaims $\mathrm{s}_{\mathrm{z}, \mathrm{yim})}$ ) | $=\sum_{b=1}^{5} C_{z, y, b(i m)}$ |  |
| BL89:CL118 | Aggregate Average Claim Levels by Cohort | $=\sum_{b=1}^{5} C_{z, y, b}$ |  |
| T126:AM155 | Aggregate Premium Rates after Durational Adjustment but Before Age Adjustment, by Cohort | $=\sum_{b=1}^{5} \text { DurAdjPremRate }_{\mathrm{z}, \mathrm{y}, \mathrm{~b}}$ |  |

## Pre-Funding.xls - Crude DBPR - Global

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AP126:BI155 | Aggregate Age-Adjusted Premium Rates by Cohort (AggAgeAdjPremRate ${ }_{z, y}$ ) | $=\sum_{b=1}^{5} \text { AgeAdjPremRate }_{2, \mathrm{y}, \mathrm{~b}}$ |  |
| BL126:CE155 | Aggregate Age-Adjusted Market New Business Premium Rates by Cohort | $=\sum_{b=1}^{5} \text { AgeAdjMktNewBusnRate }_{\mathrm{z}, \mathrm{y}, \mathrm{~b}}$ |  |
| T163:AM192 | Aggregate Standard Lives Claim Levels by Cohort (AggClaims ${ }_{z, y(s t)}$ ) | $=\sum_{b=1}^{5} \mathrm{C}_{\mathrm{z}, \mathrm{y}, \mathrm{~b}(\mathrm{st})}$ |  |
| AP163:BI192 | Aggregate Impaired Lives Claim Levels by Cohort (AggClaims ${ }_{z, y(\text { im })}$ ) | $=\sum_{b=1}^{5} C_{z, y, b(i m)}$ |  |
| BL163:CE192 | Aggregate Average Claim Levels by Cohort | $=\sum_{b=1}^{5} C_{z, y, b}$ |  |
| T200:AM229 | Aggregate Combined Actual Lapse Rates by Cohort | $=\sum_{b=1}^{5} \mathrm{q}_{\mathrm{z}, \mathrm{y}, \mathrm{~b}}$ |  |
| AP200:BI229 | Aggregate Antiselection Factors by Cohort | $=\sum_{b=1}^{5} \mathrm{AST}_{\mathrm{z}, \mathrm{y}, \mathrm{~b}}$ |  |

## Pre-Funding.xls - Crude DBPR - Global

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| BL200:CE229 | Aggregate Cumulative Antiselection Factors by Cohort | $=\sum_{b=1}^{5} \mathrm{CAST}_{\mathrm{z}, \mathrm{y}, \mathrm{~b}}$ |  |
| T237:AM256 | Aggregate Adjusted Reserve Factor by Cohort | $=\sum_{b=1}^{5} \operatorname{AdjSV}_{z, y, b}$ |  |
| AP237:BI256 | Aggregate Per Policy Reserve by Cohort | $=\sum_{b=1}^{5} \operatorname{PolV}_{\mathrm{z}, \mathrm{y}, \mathrm{~b}}$ |  |
| BL237:CE256 | Pre-Funding Reserve by Cohort (AggPreFundV $V_{z, y}$ ) | $=\sum_{b=1}^{5} \operatorname{PreFundV}{ }_{\mathrm{z}, \mathrm{y}, \mathrm{~b}}$ |  |
| T274:AM303 | Aggregate Standard Lives Expense Levels by Cohort $\left(\operatorname{AggExp}_{z, \mathrm{y}(\mathrm{st})}\right)$ | $=\sum_{b=1}^{5} \operatorname{Exp}_{\mathrm{z}, \mathrm{y}, \mathrm{~b}(\mathrm{st})}$ |  |
| AP274:BI303 | Aggregate Impaired Lives Expense Levels by Cohort $\left(\operatorname{AggExp}_{z, y(i m)}\right)$ | $=\sum_{b=1}^{5} \operatorname{Exp}_{z, y, b(i m)}$ |  |
| BL274:CE303 | Aggregate Average Expense Levels by Cohort | $=\sum_{b=1}^{5} \operatorname{Exp}_{\mathrm{z}, \mathrm{y}, \mathrm{~b}}$ |  |

## Pre-Funding.xls - Crude DBPR - Global

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| CH274:CH303 | Aggregate Enrollment of Standard Lives by Projection Year $\left(\operatorname{Aggl}_{\text {Z(st) }}\right)$ | $=\sum_{\mathrm{y}=1}^{20} \operatorname{Aggl}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}$ |  |
| CH304 | Aggregate Exposure of Standard Lives | $=\sum_{z=1}^{30} \operatorname{Aggl}_{z(\mathrm{st})}$ |  |
| CI274:CI303 | Aggregate Premium of Standard Lives by Projection Year $\left(\right.$ AggPremium $\left.{ }_{z(s t)}\right)$ | $=\sum_{\mathrm{y}=1}^{20}\left(\operatorname{Aggl}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \text { AggAgeAdjPremRate } \mathrm{z}_{\mathrm{z}, \mathrm{y}} * 12\right)$ |  |
| CI304 | Aggregate Premium of Standard Lives <br> (AggPremium ${ }_{\text {st }}$ ) | $=\sum_{\mathrm{z}=1}^{30} \text { AggPremium }_{\mathrm{z}(\mathrm{st})}$ |  |
| CJ274:CJ303 | Aggregate Paid Claims of Standard Lives by Projection Year (AggPaidClaims $\left._{z(\text { st })}\right)$ | $=\sum_{\mathrm{y}=1}^{20}\left(\operatorname{Aggl}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \operatorname{AggClaims}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * 12\right)$ |  |
| CJ304 | Aggregate Paid Claims of Standard Lives (AggPaidClaims ${ }_{\text {st }}$ ) | $=\sum_{\mathrm{z}=1}^{30} \text { AggPaidClaims }_{z(\mathrm{st})}$ |  |

## Pre-Funding.xls - Crude DBPR - Global

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| CK274:CK303 | Aggregate Loss Ratio for Standard Lives by Projection Year | $=$ AggClaims $_{\text {z(st) }} /$ AggPremium $_{\text {z(st) }}$ |  |
| CK304 | Aggregate Paid Loss Ratio for Standard Lives | = AggClaims ${ }_{\text {st }} /$ AggPremium $_{\text {st }}$ |  |
| CN274:CN303 | Aggregate Enrollment of Impaired Lives by Projection Year $\left(\mathrm{Aggl}_{z(\mathrm{im})}\right)$ | $=\sum_{\mathrm{y}=1}^{20} \operatorname{Aggl}_{\mathrm{z}, \mathrm{y}(\mathrm{im})}$ |  |
| CN304 | Aggregate Exposure of Impaired Lives | $=\sum_{\mathrm{z}=1}^{30} \mathrm{Aggl}_{\mathrm{z}(\mathrm{im})}$ |  |
| CO274:CO303 | Aggregate Premium of Impaired Lives by Projection Year (AggPremium $_{z(\mathrm{im})}$ ) | $=\sum_{\mathrm{y}=1}^{20}\left(\operatorname{Aggl}_{z, \mathrm{y}(\mathrm{im})} * \text { AggAgeAdjPremRate } \mathrm{z}_{\mathrm{z}, \mathrm{y}} * 12\right)$ |  |
| CO304 | Aggregate Premium of Impaired Lives (AggPremium $_{\mathrm{im}}$ ) | $=\sum_{\mathrm{z}=1}^{30} \text { AggPremium }_{\mathrm{z}(\mathrm{im})}$ |  |

## Pre-Funding.xls - Crude DBPR - Global

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| CP274:СР303 | Aggregate Paid Claims of Impaired Lives by Projection Year (AggPaidClaims $_{z(i m)}$ ) | $=\sum_{\mathrm{y}=1}^{20}\left(\mathrm{Aggl}_{z, y(\mathrm{im})} * \operatorname{AggClaims}_{z, y(\mathrm{im})} * 12\right)$ |  |
| CP304 | Aggregate Paid Claims of Impaired Lives (AggPaidClaims ${ }_{i m}$ ) | $=\sum_{\mathrm{z}=1}^{30} \text { AggPaidClaims }_{\mathrm{z}(\mathrm{im})}$ |  |
| CQ274:CQ303 | Aggregate Loss Ratio for Impaired Lives by Projection Year | $=$ AggPaidClaims $_{\text {z(im) }} /$ AggPremium $_{\text {z(im) }}$ | Formula applies only for $\mathrm{z}=2,3,4, \ldots, 30$. |
| CQ304 | Aggregate Paid Loss Ratio for Impaired Lives | $=$ AggPaidClaims $_{\text {im }} /$ AggPremium $_{\text {im }}$ |  |
| CS274:CS303 | Aggregate Enrollment by Projection Year $\left(\operatorname{Aggl}_{z}\right)$ | $=\operatorname{Aggl}_{\text {z(st) }}+\operatorname{Aggl}_{\mathrm{z}(\mathrm{im})}$ |  |
| CS304 | Aggregate Exposure | $=\sum_{\mathrm{z}=1}^{30} \mathrm{Aggl}_{\mathrm{z}}$ |  |
| СТ274:СТ303 | Aggregate Premium by Projection Year (AggPremium ${ }_{z}$ ) | $=$ AggPremium $_{\text {z(st) }}+$ AggPremium $_{\text {z(im) }}$ |  |

## Pre-Funding.xls - Crude DBPR - Global

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| CT304 | Aggregate Premium (AggPremium) | $=\sum_{\mathrm{z}=1}^{30} \text { AggPremium }_{\mathrm{z}}$ |  |  |
| CU274:CU303 | Aggregate Paid Claims by Projection Year (AggPaidClaims ${ }_{z}$ ) | $=$ AggPaidClaims $_{\text {z(st) }}+$ AggPaidClaims $_{\text {z(im) }}$ |  |  |
| CU304 | Aggregate Paid Claims (AggClaims) | $=\sum_{\mathrm{z}=1}^{30} \text { AggPaidClaims }_{\mathrm{z}}$ |  |  |
| CV274:CV303 | Aggregate Paid Claims PMPM by Projection Year | $=\operatorname{AggPaidClaims}_{z} / \operatorname{Aggl}_{z} / 12$ |  |  |
| CV304 | Aggregate Paid Claims PMPM | = AggPaidClaims / Aggl / 12 |  |  |
| CW274:CW303 | Aggregate Reserve by Projection Year $\left(\mathrm{AggV}_{\mathrm{z}}\right)$ | $=\sum_{\mathrm{y}=1}^{20} \text { AggPreFundV }_{\mathrm{z}, \mathrm{y}}$ |  |  |
| CX274:CX303 | Change in Aggregate Reserve $\left(\Delta \mathrm{AggV}_{\mathrm{z}}\right)$ | $\begin{aligned} = & \operatorname{AggV}_{\mathrm{Z}}, \\ & \operatorname{AggV}_{\mathrm{z}}-\operatorname{AggV}_{\mathrm{z}-1}, \end{aligned}$ | $\begin{array}{r} z=1 \\ z=2,3,4, \ldots, 30 \end{array}$ |  |

## Pre-Funding.xls - Crude DBPR - Global

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| CX304 | Lifetime Change in Aggregate Reserve (AggV) | $=\sum_{\mathrm{z}=1}^{30} \Delta \mathrm{AggV}_{\mathrm{Z}}$ |  |
| CY274:CY303 | Aggregate Incurred Claims by Projection Year (AggIncClaims ${ }_{z}$ ) | $=$ AggPaidClaims $_{\mathrm{z}}+\Delta \mathrm{AggV}_{\mathrm{z}}$ |  |
| CY304 | Aggregate Incurred Claims (AggIncClaims) | $=$ AggPaidClaims $_{\mathrm{z}}+\mathrm{AggV}$ |  |
| CZ274:CZ303 | Aggregate Paid Loss Ratio by Projection Year ( AggPaidLR $_{z}$ ) | $=$ AggPaidClaims $_{\mathrm{z}} /$ AggPremium $_{\text {z }}$ |  |
| CZ304 | Aggregate Paid Loss Ratio | = AggPaidClaims / AggPremium |  |
| DA274:DA303 | Aggregate Incurred Loss Ratio by Projection Year (AggIncLR ${ }_{z}$ ) | $=$ AggIncClaims $_{\text {z }} /$ AggPremium $_{\text {z }}$ |  |
| DA304 | Aggregate Incurred Loss Ratio | = AggIncClaims / AggPremium |  |

## Pre-Funding.xls - Crude DBPR - Global

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DB274:DB303 | Actual-to-Expected Paid Loss Ratio by Projection Year | $=\text { AggPaidLR }_{\mathrm{z}} / \text { ExpectedPaidLR }_{\mathrm{z}, 1}$ <br> ExpectedPaidLR $\mathrm{R}_{\mathrm{Z}, 1}$ is from the appropriate cell of DBPR Assumptions!BZ14:BZ43 | Note that the expected paid loss ratio is the value for block 1. |
| DC274:DC303 | Actual-to-Expected Incurred Loss Ratio by Projection Year | $=\text { AggIncLR }_{\mathrm{z}} / \text { ExpectedIncLR }_{\mathrm{z}, 1}$ <br> ExpectedIncLR ${ }_{z, 1}$ is from the appropriate cell of DBPR Assumptions!CE14:CE43 | Note that the expected incurred loss ratio is the value for block 1. |
| DD274:DD303 | Aggregate Earnings on Reserves by Projection Year (AggReturn ${ }_{z}$ ) | $\begin{array}{lr} \hline= & z=1 \\ \operatorname{AggV}_{\mathrm{z}-1} * \text { Return\%, } & \mathrm{z}=1 \\ \mathrm{z}=2,3,4, \ldots, 30 \end{array}$ <br> Return\% is from DBPR Assumptions!E8 |  |
| DD304 | Aggregate Earnings on Reserves (AggReturn) | $=\sum_{z=1}^{30} \text { AggReturn }_{z}$ |  |
| DE274:DE303 | Aggregate Loss Ratio with Interest by Projection Year | $=\begin{array}{lc} 0, & \operatorname{AggPremium}_{\mathrm{z}}=0 \\ \left(\text { AggPaidClaims }_{\mathrm{z}}+\Delta \operatorname{AggV}_{\mathrm{z}}-\text { AggReturn }_{\mathrm{z}}\right) / \operatorname{AggPremium}_{\mathrm{z}}, \\ & \operatorname{AggPremium}_{\mathrm{z}} \neq 0 \end{array}$ |  |
| DE304 | Aggregate Loss Ratio with Interest | $=($ AggPaidClaims $+\Delta \mathrm{AggV}-$ AggReturn $) /$ AggPremium |  |

## Pre-Funding.xls - Crude DBPR - Global

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DF274:DF303 | Aggregate Expenses by Projection Year $\left(\mathrm{AggExp}_{z}\right)$ | $=12 * \sum_{\mathrm{y}=1}^{20}\left[\left(\operatorname{Aggl}_{z, \mathrm{y}(\mathrm{st})} * \operatorname{AggExp}_{z, \mathrm{y}(\mathrm{st})}\right)+\left(\operatorname{Aggl}_{z, \mathrm{y}(\mathrm{im})} * \operatorname{AggExp}_{z, \mathrm{y}(\mathrm{im})}\right)\right]$ |  |
| DF304 | Aggregate Expenses | $=\sum_{\mathrm{z}=1}^{30} \operatorname{AggExp}_{\mathrm{z}}$ |  |
| DG274:DG303 | Aggregate Gain by Projection Year $\left(\right.$ AggGain $\left._{z}\right)$ | $\begin{aligned} & =\text { AggPremium }_{\mathrm{z}}-\text { AggPaidClaims }_{\mathrm{z}}-\Delta \mathrm{AggV}_{\mathrm{z}}+\text { AggReturn }_{\mathrm{z}} \\ & \\ & - \text { AggExpense }_{\mathrm{z}} \end{aligned}$ |  |
| DG304 | Aggregate Gain | $=$ AggPremium - AggPaidClaims $-\Delta \mathrm{AggV}+$ AggReturn - AggExpense |  |
| DH274:DH303 | Aggregate Gain as a Percentage of Aggregate Premium by Projection Year | $=$ AggGain $_{\text {/ }} /$ AggPremium $_{\text {z }}$ |  |
| DH304 | Aggregate Gain as a Percentage of Aggregate Premium | = AggGain / AggPremium |  |
| DI274:DI303 | Aggregate Risk-Based Capital by Projection Year $\left(\mathrm{AggRBC}_{\mathrm{z}}\right)$ | $=\text { AggPremium }_{\mathrm{z}} * \text { RBC\% }$ <br> RBC\% is from Global Assumptions!D83 |  |

## Pre-Funding.xls - Crude DBPR - Global

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DJ274:DJ303 | Aggregate Opportunity Cost of Capital by Projection Year $\left(\mathrm{AggOCC}_{\mathrm{z}}\right)$ | $=-\operatorname{AggRBC}_{\mathrm{z}} * \text { OCC\% }$ <br> OCC\% is from Global Assumptions!D84 |  |
| DJ304 | Aggregate Opportunity Cost of Capital | $=\sum_{\mathrm{z}=1}^{30} \mathrm{AggOCC}_{\mathrm{z}}$ |  |
| DK274: DK303 | Aggregate Reserve Margin by Projection Year (AggRsvMargin ${ }_{z}$ ) | $=\{1-[1 /(1+\text { ReqRsvMargin })]\} * \operatorname{AggV}_{z} * \text { OCC\% }$ <br> ReqRsvMargin is from DBPR Assumptions!L6 OCC\% is from Global Assumptions!D84 |  |
| DK304 | Aggregate Reserve Margin | $=\sum_{\mathrm{z}=1}^{30} \operatorname{AggRsvMargin}_{\mathrm{z}}$ |  |
| DL274:DL303 | Aggregate Economic Gain by Projection Year (AggEconGain ${ }_{z}$ ) | $=$ AggGain $_{z}+$ AggOCC $_{z}+$ AggRsvMargin $_{z}$ |  |
| DL304 | Aggregate Economic Gain | $=\sum_{z=1}^{30} \text { AggEconGain }_{z}$ |  |

## Pre-Funding.xls - Crude DBPR - Global

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| CT307 | Present Value of Aggregate Premium (PVAggPremium) | $=N^{\text {P }} \mathrm{V}_{\text {int }}\left(\operatorname{AggPremium}_{z}\right) * \sqrt{1+\mathrm{int}}$ | For all of the following present value calculations, int is from Global Assumptions!B63, and the present values are taken over $\mathrm{z}=1,2,3$, ..., 30. |
| CU307 | Present Value of Aggregate <br> Paid Claims <br> (PVAggPaidClaims) | $=\mathrm{NPV}_{\text {int }}\left(\text { AggPaidClaims }_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| CY307 | Present Value of Aggregate Incurred Claims <br> (PVAggIncClaims) | $=\mathrm{NPV}_{\text {int }}\left(\right.$ AggIncClaims $\left._{\text {z }}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DD307 | Present Value of Aggregate Earnings on Reserves (PVAggReturn) | $=N P V_{\text {int }}\left(\operatorname{AggReturn}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DF307 | Present Value of Aggregate Expenses <br> (PVAggExp) | $=N P V_{\text {int }}\left(\operatorname{AggExp}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DG307 | Present Value of Aggregate Gains (PVAggGain) | $=N P V_{\text {int }}\left(\right.$ AggGain $^{\text {z }}$ ) $* \sqrt{1+\mathrm{int}}$ |  |

## Pre-Funding.xls - Crude DBPR - Global

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| DH307 | Present Value of Aggregate <br> Gain as a Percentage of <br> Present Value of Aggregate <br> Premium | $=$ PVAggGain / PVAggPremium |  |
| DJ307 | Present Value of Aggregate <br> Opportunity Cost of Capital <br> (PVAggOCC) | $=\mathrm{NPV}_{\mathrm{int}}\left(\mathrm{AggOCC}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DK307 | Present Value of Aggregate <br> Reserve Margin <br> (PVAggRsvMargin) | $=\mathrm{NPV}_{\text {int }}\left(\right.$ AggRsvMargin $\left._{2}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DL307 | Present Value of Aggregate <br> Economic Gain <br> (PVAggEconGain) | $=\mathrm{NPV}_{\text {int }}\left(\right.$ AggEconGain $\left._{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| CT308 | Present Value of Aggregate <br> Premium as a Percentage of <br> Present Value of Aggregate <br> Premium | $=$ PVAggPremium / PVAggPremium |  |
| CU308 | Present Value of Aggregate <br> Paid Claims as a Percentage <br> of Present Value of <br> Aggregate Premium | $=$ PVAggPaidClaims / PVAggPremium | Identically equal to |

## Pre-Funding.xls - Crude DBPR - Global

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| CY308 | Present Value of Aggregate <br> Incurred Claims as a <br> Percentage of Present Value <br> of Aggregate Premium | $=$ PVAggIncClaims / PVAggPremium |  |
| DD308 | Present Value of Aggregate <br> Earnings on Reserves as a <br> Percentage of Present Value <br> of Aggregate Premium |  |  |
| DF308 | Present Value of Aggregate <br> Expenses as a Percentage of <br> Present Value of Aggregate <br> Premium | PVAggExp / PVAggPremium |  |
| DG308 | Present Value of Aggregate <br> Gain as a Percentage of <br> Present Value of Aggregate <br> Premium | $=$ PVAggGain / PVAggPremium |  |
| DJ308 | Present Value of Aggregate <br> Opportunity Cost of Capital <br> as a Percentage of Present <br> Value of Aggregate <br> Premium | = PVAggOCC / PVAggPremium |  |

## Pre-Funding.xls - Crude DBPR - Global

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| DK308 | Present Value of Aggregate <br> Reserve Margin as a <br> Percentage of Present Value <br> of Aggregate Premium | $=$ PVAggRsvMargin / PVAggPremium |  |
| DL308 | Present Value of Aggregate <br> Economic Gain as a <br> Percentage of Present Value <br> of Aggregate Premium | $=$ PVAggEconGain / PVAggPremium |  |

## Pre-Funding.xls - DBPR-1, DBPR-2, DBPR-3, DBPR-4, DBPR-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| D4 | Block Number <br> (b) | Hardcoded value equal to the block number; i.e., 1 for DBPR-1, 2 for DBPR-2, etc. | Subscript b applies to each variable in DBPR1 , DBPR-2, etc. but is omitted from documentation. |
| D5 | Year Introduced (IntroYr) | From the appropriate cell of Global Assumptions!Q7:Q11 | Equals 1, 4, 7, 10, 13 for blocks 1, 2, 3, 4, and 5, respectively. |
| D6 | Initial Reference Premium (InitRefPrem) | From Global Assumptions!C24 |  |
| D7 | Initial Reference Claim Cost for Standard Lives <br> (InitRefClaims ${ }_{\text {st }}$ ) | From Global Assumptions!D49 |  |
| D8 | Initial Reference Claim Cost for Impaired Lives <br> (InitRefClaims ${ }_{i m}$ ) | From Global Assumptions!D60 |  |
| B12:B41 | Base Lapse Rate for Standard Lives (Baseq $_{\mathrm{x}(\mathrm{st})}$ ) | From the appropriate cell of Global Assumptions!D29:D33 |  |
| C12:C41 | Base Lapse Rate for Impaired Lives ( Baseq $_{x(i m)}$ ) | From Global Assumptions!C54 |  |

## Pre-Funding.xls - DBPR-1, DBPR-2, DBPR-3, DBPR-4, DBPR-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| D12:D41 | Duration Factor ( $\mathrm{DF}_{\mathrm{x}}$ ) | From the appropriate cell of Global Assumptions!B77:B81 |  |
| E12:E41 | Per Policy Expense Rates ( $\operatorname{Expol}_{\text {Pol(x) }}$ ) | From the appropriate cell of Global Assumptions!B70:B74 |  |
| F12:F41 | Percentage-of-Claims Expense Rates (Exp\%C(x)) | From the appropriate cell of Global Assumptions!C70:C74 |  |
| G12:G41 | Base Commission Rates $\left(\right.$ Comm $\left._{B(x)}\right)$ | From the appropriate cell of Global Assumptions!D70:D74 |  |
| H12:H41 | Renewal Commission Rates $\left(\operatorname{Comm}_{\mathrm{R}(\mathrm{x})}\right)$ | From the appropriate cell of Global Assumptions!E70:E74 |  |
| I12:I41 | Other Premium-Related Expense Rates (Expoth\%P(x)) | From the appropriate cell of Global Assumptions!F70:F74 |  |
| J12:J41 | Premium Age Factor $\left(\mathrm{PAF}_{\mathrm{x}}\right)$ | $\begin{array}{lr} 1, & x=1 \\ & \operatorname{PAF}_{x-1} *(1+\text { PremGrowthAge }), \end{array} \quad x=2,3,4, \ldots, 30$ <br> PremGrowthAge is from Global Assumptions!C25 |  |

## Pre-Funding.xls - DBPR-1, DBPR-2, DBPR-3, DBPR-4, DBPR-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| K12:K41 | Rate of Impairment $\left(\mu_{\mathrm{x}}\right)$ | From the appropriate cell of Global Assumptions!E43:E47 |  |
| L12:L41 | Durational Rate Increase $\left(\mathrm{DRI}_{\mathrm{x}}\right)$ | From the appropriate cell of DBPR Assumptions!P14:P43 |  |
| O12:O41 | Reference Premium ( RefPrem $_{z}$ ) | $\begin{array}{rlr} \hline= & \text { InitRefPrem, } & z=1 \\ & \text { RefPrem }_{z-1} *\left(1+\text { ActTrend }_{z-1}\right), & z=2,3,4, \ldots, 30 \end{array}$ | Note that columns B:L are based on duration (subscript = x), but columns O:Y are based on projection year (subscript = z) |
| P12:P41 | Baseline New Sales (BaseSales ${ }_{z}$ ) | From the appropriate cell of Global Assumptions!P15:T44 |  |
| Q12:Q41 | Standard Lives Reference Claims <br> (RefClaims $\mathrm{z}_{\mathrm{z}(\mathrm{st})}$ ) | $\begin{array}{lrr} = & \text { InitRefClaims }_{\text {st, }} & \mathrm{z}=1 \\ \mathrm{C}_{\mathrm{z}-1 \text { (st) }} *\left(1+\text { ActTrend }_{z-1}\right), & \mathrm{z}=2,3,4, \ldots, 30 \end{array}$ |  |
| R12:R41 | Impaired Lives Reference Claims (RefClaims $_{z(i m)}$ ) | $\begin{array}{llr} \hline= & \text { InitRefClaims }_{\text {im }}, & z=1 \\ & \text { C }_{z-1(\mathrm{im})} *\left(1+\text { ActTrend }_{z-1}\right), & \mathrm{z}=2,3,4, \ldots, 30 \end{array}$ |  |
| S12:S41 | Actual Trend ( ActTrend $_{z}$ ) | From appropriate cell of Global Assumptions!B106:B135 |  |

## Pre-Funding.xls - DBPR-1, DBPR-2, DBPR-3, DBPR-4, DBPR-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| T13:T41 | Implemented Rate Increase for New Business (ImpRateIncNew ${ }_{z}$ ) | $=\min \left(\right.$ MaxRateInc, RegDamp * ReqRateIncNew ${ }_{z}$ ) <br> MaxRateInc is from Global Assumptions!D100 <br> RegDamp is from the appropriate cell of Global Assumptions!D90:D99, based on the value of ReqRateIncNew ${ }_{z}$ | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$. |
| U13:U41 | Implemented Rate Increase for Renewal Business (ImpRateIncRen ${ }_{z}$ ) | $=\min \left(\right.$ MaxRateInc, RegDamp * ReqRateIncRen ${ }_{z}$ ) <br> MaxRateInc is from Global Assumptions!D100 <br> RegDamp is from the appropriate cell of Global Assumptions!D90:D99, based on the value of ReqRateIncNew ${ }_{z}$ | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$. |
| V12:V41 | Market New Business Rate (MarketRate ${ }_{z}$ ) | $\begin{array}{rlr} \hline= & \mathrm{GP}_{\mathrm{z}(\mathrm{Pr})} / 12, & \mathrm{z}=1 \\ & \text { MarketRate }_{\mathrm{z}-1} *\left(1+\text { ActTrend }_{\mathrm{z}-1}\right), & \mathrm{z}=2,3,4, \ldots, 30 \end{array}$ <br> $\mathrm{GP}_{\mathrm{z}(\mathrm{pr})}$ is from DBPR Assumptions!AH14 |  |
| W12:W41 | Company New Business Rate (ComNewBusnRate ${ }_{z}$ ) | $$ <br> Disc@Intro is from Global Assumptions!D26 |  |

## Pre-Funding.xls - DBPR-1, DBPR-2, DBPR-3, DBPR-4, DBPR-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| X13:X41 | Requested Rate Increase for New Business (ReqRateIncNew ${ }_{z}$ ) |  <br> ExpectedPaidLR $\mathrm{R}_{\mathrm{z}-2}$ is from the appropriate cell of DBPR Assumptions!BZ14:CD43, based on the block and projection year | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$. |
| Y13:Y41 | Requested Rate Increase for Renewal Business (ReqRateIncRen ${ }_{z}$ ) | $\begin{array}{ll} =0, & \mathrm{z} \leq \text { IntroYr } \\ & \text { ReqRateIncNew } \\ \text {, } \end{array} \quad \mathrm{z}>\text { IntroYr }$ | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$. |
| AB12:AU41 | New Business Sales by Cohort (NewSales ${ }_{\text {z, }}$ ) | otherwise <br> MktPriceSens is from Global Assumptions!D14 <br> ComPriceSens is from Global Assumptions!D15 |  |
| AB42:AU42 | Total New Business Sales for Issue Year y | $=\sum_{\mathrm{z}=1}^{30} \text { NewSales }_{\mathrm{z}, \mathrm{y}}$ |  |

## Pre-Funding.xls - DBPR-1, DBPR-2, DBPR-3, DBPR-4, DBPR-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AX12:BQ41 | Actual Lapse Rates for Standard Lives by Cohort $\left(\mathrm{q}_{z, \mathrm{y}, \mathrm{st})}\right)$ | 0 , $\mathrm{x} \leq 1 \text { or BaseSales } \mathrm{y}=0$ <br> $\max \left\{\mathrm{q}_{\min (\mathrm{st}),}, \min \left[\mathrm{q}_{\max (\mathrm{st})}\right.\right.$, Baseq $_{\mathrm{x}-1(\mathrm{st})}+\left(\left(\right.\right.$ AgeAdjPremRate $\mathrm{Z}_{\mathrm{z}, \mathrm{y}}$ <br> / AgeAdjPremRate ${ }_{z-1, \mathrm{y}}$ ) - 1 - ActTrend $_{\mathrm{z}}$ ) LapseAdjTrend $_{\text {st }}$ <br> * (((AgeAdjPremRate $\mathrm{z}_{\mathrm{z}, \mathrm{y}} /$ AgeAdjMktNewBusnRate $\left.\left._{\mathrm{z}, \mathrm{y}}\right)-1\right)$ <br> $=\quad *$ LapseAdjMkt $\left._{\mathrm{st}}+1\right)-\left(\left(\left(\right.\right.\right.$ ComNewBusnRate $_{\mathrm{y}} /$ RefPrem $\left._{\mathrm{y}}\right)$ <br> $-1) *$ LapseAdjSale $\left.\left.\left._{s t}\right)\right]\right\}, \quad x=2,3$, or 4 and BaseSales $_{y} \neq 0$ <br> $\max \left\{\mathrm{q}_{\min (\mathrm{st}),}, \min \left[\mathrm{q}_{\max (\mathrm{st})}\right.\right.$, Baseq $_{\mathrm{x}-1(\mathrm{st})}+\left(\left(\right.\right.$ AgeAdjPremRate $\mathrm{Z}_{\mathrm{z}, \mathrm{y}}$ <br> / AgeAdjPremRate ${ }_{z-1,1, \mathrm{y}}$ ) 1 - ActTrend $\left._{\mathrm{z}}\right)$ * LapseAdjTrend $_{\text {st }}$ <br> * (((AgeAdjPremRate $\mathrm{z}_{\mathrm{z}, \mathrm{y}}$ / AgeAdjMktNewBusnRate $\left.{ }_{\mathrm{z}, \mathrm{y}}\right)$ - 1) <br> * LapseAdjMkt $\left.\left.\left._{\text {st }}+1\right)\right]\right\}$, <br> $\mathrm{q}_{\text {min(st) }}$ is from Global Assumptions!D40 <br> $\mathrm{q}_{\max (5 t)}$ is from Global Assumptions!D39 <br> AgingTrend is from Global Assumptions!C22 <br> LapseAdjTrend $_{\text {st }}$ is from Global Assumptions!D36 <br> LapseAdjMkt ${ }_{\text {st }}$ is from Global Assumptions!D37 <br> LapseAdjSale $_{\text {st }}$ is from Global Assumptions!D38 | Ratio of premiums should be divided by (1 + AgingTrend) to be consistent with Current Markets model. |
| BT12:CM41 | Newly Impaired Lives by Cohort (NewImpLives $_{\text {z,y }}$ ) | $\begin{array}{llr} =0, & x \leq 1 \\ l_{z-1, y(s t)} * \mu_{x-1} *\left(1-q_{z, y(i m)}\right), & x>1 \end{array}$ |  |

## Pre-Funding.xls - DBPR-1, DBPR-2, DBPR-3, DBPR-4, DBPR-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AB51:AU80 | Enrollment of Standard Lives by Cohort $\left(l_{z, y(s t)}\right)$ | $=\begin{array}{ll} 0, & x<1 \\ & \text { NewSales }_{z, y}, \\ & \text { NewSales }_{\mathrm{z}, \mathrm{y}}+\mathrm{l}_{\mathrm{z}-1, \mathrm{y}(\mathrm{st})} *\left(1-\mu_{\mathrm{x}-1}\right) *\left(1-\mathrm{q}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}\right), \end{array}$ |  |
| AB81:AU81 | Total Enrollment of Standard Lives by Issue Year | $=\sum_{z=1}^{30} l_{z, y(s t)}$ |  |
| AX51:BQ80 | Actual Lapse Rates for Impaired Lives by Cohort ( $\mathrm{q}_{z, y(\mathrm{im})}$ ) |  | Ratio of premiums should be divided by (1 + AgingTrend) to be consistent with Current Markets model. |
| BT51:CM80 | Enrollment of Impaired Lives by Cohort $\left(l_{z, y(i m)}\right)$ | $\begin{array}{lll} =0, & x=1 \\ & \text { NewImpLives }_{z, y}+l_{z-1, y(i m)} * q_{z, y(i m)}, & x>1 \end{array}$ |  |
| BT81:CM81 | Total Enrollment of Impaired Lives by Issue Year | $=\sum_{\mathrm{z}=1}^{30} l_{\mathrm{z}, \mathrm{y}(\mathrm{~m})}$ |  |

## Pre-Funding.xls - DBPR-1, DBPR-2, DBPR-3, DBPR-4, DBPR-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AB89:AU118 | Projected Standard Lives Pricing Claim Levels by Cohort $\left(\mathrm{C}_{\mathrm{z}, \mathrm{y}(\mathrm{st}, \mathrm{pr})}\right)$ |  |  |
| AX89:BQ118 | Projected Impaired Lives Claim Levels by Cohort ( $\mathrm{C}_{\mathrm{z}, \mathrm{y}(\mathrm{st}, \mathrm{pr})}$ ) | $=\begin{array}{lr} 0, & \text { BaseSales }_{y}=0 \\ \text { RefClaims }_{z(\mathrm{im}),} & \text { BaseSales }_{\mathrm{y}} \neq 0 \text { and } \mathrm{x}=1 \\ \mathrm{C}_{\mathrm{z}-1, \mathrm{y}(\mathrm{im})} *\left(1+\text { ActTrend }_{\mathrm{z}}\right) *(1+\text { AgingTrend }), & \text { otherwise } \end{array}$ | Should use ActTrend ${ }_{z-1}$ to be consistent with other parts of the model. |
| BT89:CM118 | Projected Average Claim Levels by Cohort ( $\mathrm{C}_{\mathrm{z}, \mathrm{y}(\mathrm{pr})}$ ) | $\mathrm{l}_{\mathrm{x}(\mathrm{st})}$ is from the appropriate cell of DBPR Assumptions!E14:E43 $\mathrm{l}_{\mathrm{x}(\mathrm{im})}$ is from the appropriate cell of DBPR Assumptions!F14:F43 $l_{\mathrm{x}}$ is from the appropriate cell of DBPR Assumptions!G14:G43 AgingTrend is from Global Assumptions!C22 | Should use ActTrend ${ }_{\mathrm{x}-1}$ to be consistent with other parts of the model. |

## Pre-Funding.xls - DBPR-1, DBPR-2, DBPR-3, DBPR-4, DBPR-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AB126:AU155 | Premium Rates after Durational Adjustment but Before Age Adjustment, by Cohort (DurAdjPremRate ${ }_{z, \mathrm{y}}$ ) | $\begin{array}{lc} 0, & \text { BaseSales }_{\mathrm{y}}=0 \\ = & \text { ComNewBusnRate }_{\mathrm{z}}, \\ \text { DurAdjPremRate }_{\mathrm{z}-1, \mathrm{y}} *\left(1+\text { ImpRateIncRen }_{\mathrm{z}}\right) *\left(1+\mathrm{DRI}_{\mathrm{x}}\right), \end{array}$ |  |
| AX126:BQ126 | Premium Rates Adjusted for both Duration and Age (AgeAdjPremRate ${ }_{z, \mathrm{y}}$ ) | $=\begin{array}{lr} \text { DurAdjPremRate }_{2, y}, & x<1 \\ & \text { DurAdjPremRate }_{z, y} * \text { PAF }_{x}, \end{array} \quad x=2,3,4, \ldots, 30$ |  |
| BT126:CM155 | Age-Adjusted Market-Level New Business Premium Rates by Cohort (AgeAdjMktNew BusnRate $_{z, y}$ ) | $\begin{array}{lr} \hline=, & \mathrm{x}<1 \text { or } \text { BaseSales }_{\mathrm{y}}=0 \\ \text { MarketRate }_{\mathrm{z}} * \text { PAF }_{\mathrm{x}}, & \text { otherwise } \end{array}$ |  |

## Pre-Funding.xls - DBPR-1, DBPR-2, DBPR-3, DBPR-4, DBPR-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AB163:AU192 | Standard Lives Actual Claim Levels by Cohort ( $\mathrm{C}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}$ ) |  | Should use ActTrend ${ }_{z-1}$ to be consistent with other parts of the model. |
| AX163:BQ192 | Impaired Lives Actual Claim Levels by Cohort ( $\mathrm{C}_{\mathrm{z}, \mathrm{y}(\mathrm{im})}$ ) | AgingTrend is from Global Assumptions!C22 |  |
| BT163:CM192 | Average Actual Claim Levels by Cohort ( $\mathrm{C}_{\mathrm{z}, \mathrm{y}}$ ) | $\begin{array}{lll} =0, & l_{z, y}=0 \\ {\left[\left(l_{\text {lyy(st) }} * C_{z, y(s t, ~ p r)}\right)+\left(l_{z, y(\mathrm{~m})} * C_{z, y(\mathrm{~m}, \mathrm{pr})}\right)\right] / l_{\mathrm{z}, \mathrm{y}},} & l_{\mathrm{z}, \mathrm{y}}>0 \end{array}$ |  |

## Pre-Funding.xls - DBPR-1, DBPR-2, DBPR-3, DBPR-4, DBPR-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AB200:AU229 | Actual Combined Lapse Rates by Cohort $\left(\mathrm{q}_{\mathrm{z}, \mathrm{y}}\right)$ |  | Enrollment should be for projection year z rather than $\mathrm{z}-1$ to be consistent with other parts of the model. |
| AX200:BQ229 | Antiselection Factors by Cohort $\left(\mathrm{AST}_{\mathrm{z}, \mathrm{y}}\right)$ | 0, BaseSales $_{y}=0$ <br> $=$ 1,$\quad$ BaseSales $_{y} \neq 0$ and $\mathrm{x}=1$ <br> RsvRetUnantLapse is from DBPR Assumptions!V7 <br> $\mathrm{q}_{\mathrm{x}-1(\mathrm{pr})}$ is from the appropriate cell of DBPR Assumptions!H14:H43 minAST is from DBPR Assumptions!V5 |  |
| BT200:CM229 | Cumulative Antiselection Factors by Cohort $\left(\mathrm{CAST}_{\mathrm{z}, \mathrm{y}}\right)$ | $=$0, BaseSales $_{y}=0$ <br> $\max \left(\mathrm{AST}_{\mathrm{z}, \mathrm{y}}, \operatorname{minCAST}\right)$, BaseSales $_{\mathrm{y}} \neq 0$ and $\mathrm{z}=1$ <br> $\max \left(\mathrm{AST}_{\mathrm{z}, \mathrm{y}} * \mathrm{CAST}_{\mathrm{z}-1, \mathrm{y}}, \operatorname{minCAST}\right)$, BaseSales $_{\mathrm{y}} \neq 0$ and $\mathrm{z}>1$ <br> minCAST is from DBPR Assumptions!V6 |  |

## Pre-Funding.xls - DBPR-1, DBPR-2, DBPR-3, DBPR-4, DBPR-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AB237:AU266 | Adjusted Reserve Factor by Cohort $\left(\operatorname{Adj} \% S V_{z, y}\right)$ | $\% \mathrm{SV}_{\mathrm{x}}$ is from the appropriate cell of DBPR Assumptions!U14:U43 ReqRsvMargin is from DBPR Assumptions!L6 |  |
| AX237:BQ266 | Per Policy Reserve by Cohort $\left(\mathrm{PolV}_{\mathrm{z}, \mathrm{y}}\right)$ | $=\mathrm{Adj} \% \mathrm{SV}_{\mathrm{z}, \mathrm{y}} * \mathrm{C}_{\mathrm{z}, \mathrm{y}} * 12$ |  |
| BT237:CM266 | Pre-Funding Reserve by Cohort (PreFundV $V_{z, y}$ ) | $=\operatorname{PolV}_{z, y} *\left(l_{z, y(s t)}+l_{z, y(\text { (im })}\right)$ |  |

## Pre-Funding.xls - DBPR-1, DBPR-2, DBPR-3, DBPR-4, DBPR-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AB274:AU303 | Standard Lives Expense Levels by Cohort $\left(\operatorname{Exp}_{z, y(s t)}\right)$ | Inflation is from Global Assumptions!B64 |  |
| AX274:BQ303 | Impaired Lives Expense Levels by Cohort $\left(\operatorname{Exp}_{z, y(i m)}\right)$ | Inflation is from Global Assumptions!B64 |  |
| BT274:CM303 | Average Expense Levels by Cohort $\left(\operatorname{Exp}_{z, y}\right)$ | $\begin{aligned} & 0, \quad l_{z, y(s t)}+l_{z, y(i m)} \leq 0 \\ & =\quad\left[\left(l_{z, y(s t)} * \operatorname{Exp}_{z, y(s t)}\right)+\left(l_{z, y(\mathrm{~mm})} * \operatorname{Exp}_{z, y(\mathrm{im}))}\right)\right] /\left(l_{z, y(s t)}+l_{z, y(\mathrm{~mm})}\right), \end{aligned}$ <br> otherwise |  |

## Pre-Funding.xls - DBPR-1, DBPR-2, DBPR-3, DBPR-4, DBPR-5

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| CP274:CP303 | Standard Lives Enrollment by Projection Year ( $l_{z(\mathrm{st})}$ ) | $=\sum_{\mathrm{y}=1}^{20} l_{\mathrm{z}, \mathrm{y}(\mathrm{st})}$ |  |  |
| CP304 | Total Standard Lives Exposure | $=\sum_{z=1}^{30} l_{z(s t)}$ |  | "Total" refers to the sum over all 30 projection years. |
| CQ274:CQ303 | Standard Lives Premium by Projection Year $\left(\mathrm{P}_{\mathrm{z}(\mathrm{st})}\right)$ | $=\sum_{\mathrm{y}=1}^{20} \mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \text { AgeAdjPremRate } \mathrm{A}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * 12$ |  |  |
| CQ304 | Total Standard Lives Premium $\left(\mathrm{P}_{\mathrm{st}}\right)$ | $=\sum_{\mathrm{z}=1}^{30} \mathrm{P}_{\mathrm{z}(\mathrm{st})}$ |  |  |
| CR274:CR303 | Standard Lives Paid Claims by Projection Year ( $\mathrm{C}_{\mathrm{z}(\mathrm{stt})}$ ) | $=\sum_{\mathrm{y}=1}^{20} \mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \mathrm{C}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * 12$ |  |  |
| CR304 | Total Standard Lives Paid Claims $\left(\mathrm{C}_{\mathrm{st}}\right)$ | $=\sum_{\mathrm{z}=1}^{30} \mathrm{C}_{\mathrm{z}(\mathrm{st})}$ |  |  |
| CS274:CS303 | Standard Lives Paid Loss Ratio by Projection Year | $\begin{aligned} &= 0, \\ & C_{z(s t)} / P_{z(s t)}, \end{aligned}$ | $\mathrm{P}_{\mathrm{z}(\mathrm{st})}=0$ <br> otherwise |  |

## Pre-Funding.xls - DBPR-1, DBPR-2, DBPR-3, DBPR-4, DBPR-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| CS304 | Standard Lives Paid Loss Ratio | $=\mathrm{C}_{\text {st }} / \mathrm{P}_{\text {st }}$ |  |
| CV274:CV303 | Impaired Lives Enrollment by Projection Year $\left(\mathrm{l}_{\mathrm{z}(\mathrm{im})}\right)$ | $=\sum_{\mathrm{y}=1}^{20} \mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{im})}$ |  |
| CV304 | Total Impaired Lives Exposure | $=\sum_{\mathrm{z}=1}^{30} \mathrm{l}_{\mathrm{z}(\mathrm{im})}$ |  |
| CW274:CW303 | Impaired Lives Premium by Projection Year $\left(\mathrm{P}_{\mathrm{z}(\mathrm{im})}\right)$ | $=\sum_{\mathrm{y}=1}^{20} \mathrm{l}_{2, \mathrm{y}(\mathrm{im})} * \text { AgeAdjPremRate }_{2, \mathrm{y}(\mathrm{im})} * 12$ |  |
| CW304 | Total Impaired Lives Premium $\left(\mathrm{P}_{\mathrm{im}}\right)$ | $=\sum_{\mathrm{z}=1}^{30} \mathrm{P}_{\mathrm{z}(\mathrm{im})}$ |  |
| CX274:CX303 | Impaired Lives Paid Claims by Projection Year ( $\mathrm{C}_{\mathrm{z} \text { (im) }}$ ) | $=\sum_{\mathrm{y}=1}^{20} \mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{im})} * \mathrm{C}_{\mathrm{z}, \mathrm{y}(\mathrm{im})} * 12$ |  |
| CX304 | Total Impaired Lives Paid Claims ( $\mathrm{C}_{\mathrm{im}}$ ) | $=\sum_{z=1}^{30} C_{z(i m)}$ |  |

## Pre-Funding.xls - DBPR-1, DBPR-2, DBPR-3, DBPR-4, DBPR-5

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| CY274:CY303 | Impaired Lives Paid Loss Ratio by Projection Year | $\begin{array}{ll} = & 0, \\ C_{z(i \mathrm{~m})} / \mathrm{P}_{\mathrm{z}(\mathrm{im})} \end{array}$ | $\mathrm{P}_{\mathrm{z}(\mathrm{im})}=0$ <br> otherwise |  |
| CY304 | Impaired Lives Paid Loss Ratio | $\begin{aligned} = & 0, \\ & C_{i m} / P_{i m}, \end{aligned}$ | $\mathrm{P}_{\mathrm{im}}=0$ <br> otherwise |  |
| DA274:DA303 | Combined Enrollment by Projection Year $\left(l_{z}\right)$ | $=l_{z(\text { sti) }}+l_{z(\text { (im) }}$ |  |  |
| DA304 | Total Combined Exposure <br> (l) | $=\sum_{\mathrm{z}=1}^{30} \mathrm{l}_{\mathrm{z}}$ |  |  |
| DB274:DB303 | Combined Premium by Projection Year $\left(\mathrm{P}_{\mathrm{z}}\right)$ | $=\mathrm{P}_{\mathrm{z}(\mathrm{st})}+\mathrm{P}_{\mathrm{z}(\mathrm{im})}$ |  |  |
| DB304 | Total Combined Premium (P) | $=\sum_{z=1}^{30} \mathrm{P}_{\mathrm{z}}$ |  |  |
| DC274:DC303 | Combined Paid Claims by Projection Year <br> (PaidClaims ${ }_{z}$ ) | $=\mathrm{C}_{\mathrm{z}(\mathrm{st})}+\mathrm{C}_{\mathrm{z}(\mathrm{im})}$ |  |  |

## Pre-Funding.xls - DBPR-1, DBPR-2, DBPR-3, DBPR-4, DBPR-5

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| DC304 | Total Combined Paid Claims (PaidClaims) | $=\sum_{\mathrm{z}=1}^{30} \text { PaidClaims }_{\mathrm{z}}$ |  |  |
| DD274:DD303 | Combined Paid Claims PMPM by Projection Year | $\begin{aligned} = & 0, \\ & \text { PaidClaims }_{\mathrm{z}} / \mathrm{l}_{\mathrm{z}} / 12, \end{aligned}$ | $\mathrm{l}_{\mathrm{z}}=0$ <br> otherwise |  |
| DD304 | Total Combined Paid Claims PMPM | $\begin{aligned} = & 0, \\ & \text { PaidClaims / l /12, } \end{aligned}$ | $\mathrm{l}=0$ <br> otherwise |  |
| DE274:DE303 | Reserve by Projection Year $\left(\mathrm{V}_{\mathrm{z}}\right)$ | $=\sum_{\mathrm{y}=1}^{20} \text { PreFundV }_{\mathrm{z}, \mathrm{y}}$ |  |  |
| DF274:DF303 | Change in Reserve by Projection Year $\left(\Delta V_{z}\right)$ | $\begin{array}{ll} = & \mathrm{V}_{\mathrm{Z}}, \\ & \mathrm{~V}_{\mathrm{z}}-\mathrm{V}_{\mathrm{z}-1}, \end{array}$ | $\begin{array}{r} z=1 \\ z=2,3,4, \ldots, 30 \end{array}$ |  |
| DF304 | Total Change in Reserve ( $\Delta \mathrm{V}$ ) | $=\sum_{\mathrm{z}=1}^{30} \Delta \mathrm{~V}_{\mathrm{z}}$ |  |  |
| DG274:DG303 | Incurred Claims by Projection Year <br> (IncClaimsz) | $=$ PaidClaims $_{\mathrm{z}}+\Delta \mathrm{V}_{\mathrm{z}}$ |  |  |

## Pre-Funding.xls - DBPR-1, DBPR-2, DBPR-3, DBPR-4, DBPR-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DG304 | Total Incurred Claims (IncClaims) | $=$ PaidClaims $+\Delta \mathrm{V}$ |  |
| DH274:DH303 | Paid Loss Ratio by Projection Year (PaidLR ${ }_{z}$ ) | $\begin{array}{lr} =0, & \mathrm{z}<\text { IntroYr } \\ \text { PaidClaims } \\ \mathrm{z} \end{array} \mathrm{P}_{\mathrm{z}}, \quad \text { otherwise }$ |  |
| DH304 | Paid Loss Ratio | = PaidClaims / P |  |
| DI274:303 | Incurred Loss Ratio by Projection Year ( $\mathrm{IncLR}_{\mathrm{z}}$ ) | $\begin{array}{rlr} = & 0, & \mathrm{z}<\text { IntroYr } \\ & \text { IncClaims }_{\mathrm{z}} / \mathrm{P}_{\mathrm{z}}, & \text { otherwise } \end{array}$ |  |
| DI304 | Incurred Loss Ratio | = IncClaims / P |  |
| DJ274:DJ303 | Actual-to-Expected Paid Loss Ratio by Projection Year | $=$0, $\mathrm{z}<$ IntroYr <br>  PaidLR $_{\mathrm{z}} /$ ExpectedPaidLR $_{\mathrm{z}, \mathrm{b}}$,$\quad$ otherwise <br> ExpectedPaidLR $\mathrm{R}_{\mathrm{z}, \mathrm{b}}$ is from the appropriate cell of DBPR Assumptions!BZ14:CD43, based on the projection year and block number |  |
| DK274:DK303 | Actual-to-Expected Incurred Loss Ratio by Projection Year | $\begin{array}{\|lr} =0, & \mathrm{z}<\text { IntroYr } \\ & \mathrm{IncLR}_{\mathrm{z}} / \text { ExpectedIncLR }_{\mathrm{z}, \mathrm{~b}}, \end{array}$ <br> ExpectedIncLR ${ }_{z, \mathrm{~b}}$ is from the appropriate cell of DBPR <br> Assumptions!CE14:CI43, based on the projection year and block number |  |

## Pre-Funding.xls - DBPR-1, DBPR-2, DBPR-3, DBPR-4, DBPR-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DL274:DL303 | Earnings on Reserves by Projection Year (Return ${ }_{z}$ ) | $\begin{array}{llr} = & 0, & z=1 \\ & V_{z-1} * \text { Return } \%, & z=2,3,4, \ldots, 30 \end{array}$ <br> Return\% is from DBPR Assumptions!E8 |  |
| DL304 | Earnings on Reserves (Return) | $=\sum_{z=1}^{30} \text { Return }_{z}$ |  |
| DM274:DM303 | Loss Ratio with Interest by Projection Year | $\begin{array}{llr} \hline= & 0, & \mathrm{P}_{\mathrm{z}}=0 \text { and } \mathrm{z}<30 \\ & \left(\text { PaidClaims }_{\mathrm{z}}+\Delta \mathrm{V}_{\mathrm{z}}-\text { Return }_{\mathrm{z}}\right) / \mathrm{P}_{\mathrm{z}}, & \text { otherwise } \end{array}$ |  |
| DN274:DN303 | Expenses by Projection Year <br> $\left(\operatorname{Exp}_{z}\right)$ | $=12 * \sum_{\mathrm{y}=1}^{20}\left[\left(\mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \operatorname{Exp}_{z, \mathrm{y}(\mathrm{st})}\right)+\left(\mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{im})} * \operatorname{Exp}_{\mathrm{z}, \mathrm{y}(\mathrm{im})}\right)\right]$ |  |
| DN304 | Expenses <br> (Exp) | $=\sum_{\mathrm{z}=1}^{30} \operatorname{Exp}_{\mathrm{z}}$ |  |
| DO274:DO303 | Gain by Projection Year (Gain ${ }^{\text {) }}$ | $=\mathrm{P}_{\mathrm{z}}-$ PaidClaims $_{\mathrm{z}}-\Delta \mathrm{V}_{\mathrm{z}}+$ Return $_{\mathrm{z}}-\operatorname{Exp}_{\mathrm{z}}$ |  |
| DO304 | Gain (Gain) | $=\mathrm{P}-$ PaidClaims $-\Delta \mathrm{V}+$ Return $-\operatorname{Exp}$ |  |

## Pre-Funding.xls - DBPR-1, DBPR-2, DBPR-3, DBPR-4, DBPR-5

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| DP274:DP303 | Gain as a Percentage of Premium, by Projection Year | $\begin{aligned} & =0, \\ & \quad \operatorname{Gain}_{\mathrm{z}} / \mathrm{P}_{\mathrm{z}}, \end{aligned}$ | $\begin{aligned} & \mathrm{P}_{\mathrm{z}}=0 \\ & \mathrm{P}_{\mathrm{z}} \neq 0 \end{aligned}$ |  |
| DP304 | Gain as a Percentage of Premium | $\begin{aligned} = & 0, \\ & \text { Gain } / P, \end{aligned}$ | $\begin{aligned} & \mathrm{P}=0 \\ & \mathrm{P} \neq 0 \end{aligned}$ |  |
| DQ274:DQ303 | Risk-Based Capital by Projection Year $\left(\mathrm{RBC}_{\mathrm{z}}\right)$ | $=\mathrm{P}_{\mathrm{z}} * \mathrm{RBC} \%$ <br> RBC\% is from Global Assumptions!D83 |  | Uses a predefined percentage of premium as a proxy for riskbased capital requirement. |
| DR274:DR303 | Opportunity Cost of Capital by Projection Year ( $\mathrm{OCC}_{\mathrm{z}}$ ) | $=-\mathrm{RBC}_{\mathrm{z}} * \mathrm{OCC} \%$ <br> OCC\% is from Global Assumptions!D84 |  |  |
| DS274:DS303 | Reserve Margin by Projection Year (RsvMargin ${ }_{z}$ ) | $=-\{1-[1 /(1+\text { ReqRsvMargin })]\} * V_{\mathrm{z}} * \text { OCC\% }$ <br> ReqRsvMargin is from DBPR Assumptions!L6 OCC\% is from Global Assumptions!D84 |  |  |
| DS304 | Reserve Margin (RsvMargin) | $=\sum_{z=1}^{30} \text { RsvMargin }_{\mathrm{z}}$ |  |  |

## Pre-Funding.xls - DBPR-1, DBPR-2, DBPR-3, DBPR-4, DBPR-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DT274:DT303 | Economic Gain by Projection Year (EconGain ${ }_{\text {z }}$ ) | $=$ Gain $_{\mathrm{z}}+\mathrm{OCC}_{\mathrm{z}}+$ RsvMargin ${ }_{\mathrm{z}}$ |  |
| DT304 | Total Economic Gain | $=\sum_{z=1}^{30} \text { EconGain }_{z}$ |  |
| DB307 | Present Value of Combined Premium (PVPremium) | $=N P V_{\text {int }}\left(\mathrm{P}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ | For all of the present value calculations, int is from Global Assumptions!B63 and the present values are taken over $\mathrm{z}=1,2,3$, ..., 30. |
| DC307 | Present Value of Combined Paid Claims <br> (PVPaidClaims) | $=\mathrm{NPV}_{\text {int }}\left(\right.$ PaidClaims $^{\text {z }}$ ) $* \sqrt{1+\mathrm{int}}$ |  |
| DG307 | Present Value of Combined Incurred Claims (PVIncClaims) | $=\mathrm{NPV}_{\text {int }}\left(\right.$ IncClaims $\left._{\text {z }}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DL307 | Present Value of Earnings on Reserves <br> (PVReturn) | $=\mathrm{NPV}_{\text {int }}\left(\right.$ Return $\left._{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |

## Pre-Funding.xls - DBPR-1, DBPR-2, DBPR-3, DBPR-4, DBPR-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DN307 | Present Value of Combined Expenses <br> (PVExp) | $=\mathrm{NPV}_{\text {int }}\left(\operatorname{Exp}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DO307 | Present Value of Gain (PVGain) | $=N P V_{\text {int }}\left(\right.$ Gain $\left._{\text {z }}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DR307 | Present Value of Opportunity Cost of Capital (PVOCC) | $=\mathrm{NPV}_{\text {int }}\left(\mathrm{OCC}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DS307 | Present Value of Reserve Margin <br> (PVRsvMargin) | $=\mathrm{NPV}_{\text {int }}\left(\mathrm{RsvMargin}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DT307 | Present Value of Economic <br> Gain <br> (PVEconGain) | $=\mathrm{NPV}_{\text {int }}\left(\right.$ EconGain $\left._{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DB308 | Present Value of Combined Premium as a Percentage of Present Value of Combined Premium | = PVPremium / PVPremium | Identically equal to $100 \%$. |
| DC308 | Present Value of Combined Paid Claims as a Percentage of Present Value of Combined Premium | = PVPaidClaims / PVPremium |  |

## Pre-Funding.xls - DBPR-1, DBPR-2, DBPR-3, DBPR-4, DBPR-5

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| DG308 | Present Value of Incurred <br> Claims as a Percentage of <br> Present Value of Combined <br> Premium | $=$ PVIncClaims / PVPremium |  |
| DL308 | Present Value of Earnings <br> on Reserves as a Percentage <br> of Present Value of <br> Combined Premium | $=$ PVReturn / PVPremium |  |
| DN308 | Present Value of Combined <br> Expenses as a Percentage of <br> Present Value of Combined <br> Premium | $=$ PVExp / PVPremium |  |
| DO308 | Present Value of Gain as a <br> Percentage of Present Value <br> of Combined Premium | $=$ PVGain / PVPremium |  |
| DR308 | Present Value of <br> Opportunity Cost of Capital <br> as a Percentage of Present <br> Value of Combined <br> Premium | $=$ PVOCC / PVPremium |  |
| DS308 | Present Value of Reserve <br> Margin as a Percentage of <br> Present Value of Combined <br> Premium | $=$ PVRsvMargin / PVPremium |  |

## Pre-Funding.xls - DBPR-1, DBPR-2, DBPR-3, DBPR-4, DBPR-5

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| DT308 | Present Value of Economic <br> Gain as a Percentage of <br> Present Value of Combined <br> Premium | $=$ PVEconGain / PVPremium |  |

## Individual Market Pool.xls - Global Assumptions

The Global Assumptions tab within the Individual Market Pool spreadsheet is an exact copy of the analogous tab in the Global spreadsheet. The field names, cell numbers, and values are identical. If a change is made in the Global Assumptions tab of the Global spreadsheet, the Global Assumptions tabs of all other spreadsheets in the model will be updated automatically the next time they are opened.

## Individual Market Pool.xls - IMP Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| E9 | Eligibility Waiting Period (WaitPd) | $=5$ | Hardcoded value; represents number of years policy must be held before becoming eligible for high-risk pool. |
| E11 | Threshold Premium Percentage (ThreshPrem\%) | = 150\% | Hardcoded value; the insured's renewal rate must be at or above this percentage of the market new business rate to be considered impaired. |
| K9 | Percentage-of-Premium Pool Expenses (PoolExp\%p) | = 5.0\% | Hardcoded value |
| K10 | Percentage-of-Claims Pool Expenses <br> (PoolExp\%c) | = 5.0\% | Hardcoded value |
| K11 | Per Policy Pool Expenses PMPM <br> (PoolExp ${ }_{\text {Pol }}$ ) | $=\$ 3.50$ | Hardcoded value |

## Individual Market Pool.xls - IMP Assumptions

| Cells | Description | Formula |  | Comments |
| :--- | :--- | :--- | :--- | :--- |
| E15 (PoolP\%) | Pool Premium Percentage <br> D18 | Minimum Pool Assessment <br> (MinAssess\%) | $=0.00 \%$ | Relativity of the pool <br> premium to the market <br> new business rate |
| D19 | Maximum Pool Assessment <br> (MaxAssess\%) | $=50.00 \%$ | Hardcoded value |  |
| E23 | Migration Sensitivity to <br> Renewal Premium Rate <br> (MigrSensPrem) | $=100.0 \%$ | Hardcoded value |  |
| F25 | Bend Point | Hardcoded value; <br> "migration" refers to <br> movement into the <br> high-risk pool. |  |  |
| F26 | $=120.0 \%$ | Hardcoded value; <br> represents percentage <br> of pool rate at which <br> renewal premium is <br> large enough to cause <br> impaired lives to lapse <br> at an accelerated rate |  |  |

## Individual Market Pool.xls - IMP Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| F27 | Migration Sensitivity to Trend, High Value (MigrSensTrend ${ }_{h i}$ ) | = 50.0\% | Hardcoded value |
| E28 | Maximum Migration Rate $\left(\lambda_{\text {max }}\right)$ | = 80\% | Hardcoded value |
| E29 | Minimum Migration Rate $\left(\lambda_{\text {min }}\right)$ | = $0 \%$ | Hardcoded value |
| D30 | Pool Lapse Rate ( $\mathrm{q}_{\text {pool }}$ ) | = $25.0 \%$ | Hardcoded value |
| D38:D47 | Year of Introduction (Intro $\mathrm{Yr}_{\mathrm{b}}$ ) | From the appropriate cell of Global Assumptions!Q7:Q11 for blocks 1-5; hardcoded values for blocks 6-10 | Blocks 6-10 are unique to the Individual Market Pool model. Their purpose is to follow results of the model for a longer period of time. To turn off these blocks, set their IntroYr values to a number greater than 30. |
| B51:B80 | Baseline New Sales (BaseSales ${ }_{x}$ ) | From the appropriate cell of Global Assumptions!D4:D11 |  |

## Individual Market Pool.xls - IMP Assumptions

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| C51:L80 | Base Sales by Projection Year by Block (BaseSales ${ }_{z, b}$ ) | $\begin{aligned} = & 0, \\ & \text { BaseSales }_{z-\text { IntroYr(b) }+1}, \end{aligned}$ | $\begin{aligned} & \mathrm{z}<{\text { Intro } \mathrm{Yr}_{\mathrm{b}}}_{\mathrm{z} \geq \text { Intro }^{2} \mathrm{r}_{\mathrm{b}}} \end{aligned}$ |  |
| R34 | Target Lifetime Loss Ratio (TargetLR) | $=65.0 \%$ |  | Hardcoded value |
| R35 | Maximum Allowable Loss Ratio <br> (MaxLR) | = 200.0\% |  | Hardcoded value |
| Q36 | Flag to Include Trend (TrendFlag) | $=1$ |  | Hardcoded value; value of 1 means to include trend in projections, value of 0 means to exclude trend. |
| Q40 | Initial Reference Claim Cost for Standard Lives <br> (InitRefClaims ${ }_{\text {st }}$ ) | From Global Assumptions!D49 |  | Best estimate of starting claim costs for standard lives |

## Individual Market Pool.xls - IMP Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| S40 | Pricing Assumption of Initial Reference Claim Cost for Standard Lives (InitRefClaims ${ }_{\text {st(pr) }}$ ) | = InitRefClaims ${ }_{\text {st }}$ | Standard lives starting claim costs used in initial pricing; the model provides the flexibility to adjust the baseline claims for use in pricing, but the model currently does not make any such adjustment. |
| Q41 | Initial Reference Claim Cost for Impaired Lives <br> (InitRefClaims ${ }_{\text {im }}$ ) | From Global Assumptions!D60 | Best estimate of starting claim costs for impaired lives |
| S41 | Pricing Assumption of Initial Reference Claim Cost for Impaired Lives (InitRefClaims ${ }_{\mathrm{im}(\mathrm{pr})}$ ) | $=$ InitRefClaims $_{\text {im }}$ | Impaired lives starting claim costs used in initial pricing; the model provides the flexibility to adjust the baseline claims for use in pricing, but the model currently does not make any such adjustment. |

## Individual Market Pool.xls - IMP Assumptions

$\left.\begin{array}{|l|l|l|l|l|}\hline \text { Cells } & \text { Description } & \text { Formula } & & \begin{array}{l}\text { Comments }\end{array} \\ \hline \text { S42 } & \begin{array}{l}\text { Durational Deterioration } \\ \text { Limitation Period } \\ \text { (DDLP) }\end{array} & =5 \\ \text { period during which } \\ \text { the probability of a } \\ \text { standard life becoming } \\ \text { impaired is assumed to } \\ \text { be greater than zero for } \\ \text { pricing purposes }\end{array}\right]$

## Individual Market Pool.xls - IMP Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| P46:P75 | Impaired Lives Base Lapse Rates Used in Pricing $\left(\mathrm{q}_{\mathrm{x}(\mathrm{im}, \mathrm{pr})}\right)$ |  | Baseline impaired lives lapse rates adjusted to reflect higher anticipated lapses due to rate increases exceeding claim trend during durational deterioration limitation period; beyond DDLP, impaired lives lapse rates are equal to standard lives lapse rates. |
| Q46:Q75 | Probability of Becoming Impaired Used in Pricing ( $\left.\mu_{\mathrm{x}(\mathrm{pr})}\right)$ | $\begin{array}{lll} =\mu_{\mathrm{x}}, & \mathrm{x} \leq \text { DDLP } \\ 0, & \mathrm{x}>\text { DDLP } \end{array}$ <br> $\mu_{\mathrm{x}}$ is from the appropriate cell of Global Assumptions!E43:E47 |  |
| R46:R75 | Number of Standard Lives $\left(\mathrm{l}_{\mathrm{x}(\mathrm{st}}\right)$ | $\begin{array}{llr} = & 1.00, & x=1 \\ & l_{\mathrm{x}-1(\mathrm{st})} *\left(1-\mu_{\mathrm{x}-1(\mathrm{pr})}\right) *\left(1-\mathrm{q}_{\mathrm{x}-1(\mathrm{st}, \mathrm{pr})}\right), & \mathrm{x}=2,3,4, \ldots, 30 \end{array}$ | The values in columns R , S , and T represent proportions of the number of first-year standard lives |

## Individual Market Pool.xls - IMP Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| S46:S75 | Number of Impaired Lives ( $\left.\mathrm{l}_{\mathrm{x}(\mathrm{im})}\right)$ | $\begin{array}{llr} = & 0, & x=1 \\ {\left[1_{\mathrm{x}-1(\mathrm{im})} *\left(1-\mathrm{q}_{\mathrm{x}-1(\mathrm{im}, \mathrm{pr})}\right)\right]+\left[\mathrm{l}_{\mathrm{x}-1(\mathrm{st})} * \mu_{\mathrm{x}-1(\mathrm{pr})}\right],} & \mathrm{x}=2,3,4, \ldots, 30 \end{array}$ |  |
| T46:T75 | Number of Total Lives $\left(l_{x}\right)$ | $=l_{\text {x(st) }}+l_{\text {x(im) }}$ |  |
| U46:U75 | Accumulated Trend (AccumTrend ${ }^{\text {x }}$ ) | $\begin{array}{lr} 1, & x=1 \\ & \text { AccumTrend }_{x-1} *[1+(\text { Trend } * \text { TrendFlag })], \end{array} \quad x=2,3,4, \ldots, 30$ <br> Trend is from Global Assumptions!D21 |  |
| V46:V75 | Discount Factor $\left(v_{x}\right)$ | $\begin{array}{lr} 1, & x=1 \\ v_{x-1} /(1+\text { int }), & x=2,3,4, \ldots, 30 \end{array}$ |  |
| W46:W75 | Pricing Claims ( $\mathrm{C}_{\mathrm{x}(\mathrm{pr})}$ ) | InitRefPrem is from Global Assumptions!C24 <br> MorbAdj ${ }_{s t}$ is from Global Assumptions!D51 <br> $\mathrm{DF}_{\mathrm{x}}$ is from the appropriate cell of IMP-1!D12:D43 <br> $\mathrm{PAF}_{\mathrm{x}}$ is from the appropriate cell of IMP-1!J12:J41 | Standard lives’ claims are adjusted each year for duration (within the DDLP), aging, and trend. <br> Impaired lives’ claims are adjusted each year for aging and trend. |

## Individual Market Pool.xls - IMP Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| X46:X75 | Annual Durational Rate Increase <br> ( $\mathrm{ADRI}_{\mathrm{x}}$ ) | $=$0, $x=1$ <br> $\operatorname{DRI}_{x}$, $x=2,3,4, \ldots, 30$ |  |
| Y46:Y75 | Accumulated Durational Rate Increase Factor (AccumDRI ${ }_{x}$ ) | $\begin{array}{llr} \hline= & 1, & x=1 \\ & \text { AccumDRI }_{x-1} *\left(1+\text { ADRI }_{x}\right), & x=2,3,4, \ldots, 30 \end{array}$ |  |
| Z46:Z75 | Pricing Premium ( $\mathrm{P}_{\mathrm{x}(\mathrm{pr})}$ ) | $\begin{aligned} & \mathrm{l}_{1} * \sum_{\mathrm{i}=1}^{30}\left(\mathrm{C}_{\mathrm{i}(\mathrm{pr})} * \mathrm{v}_{\mathrm{i}}\right) / \sum_{\mathrm{j}=1}^{30}\left(\mathrm{l}_{\mathrm{j}} * \mathrm{PAF}_{\mathrm{j}} * \text { AccumTrend }_{\mathrm{j}} * \mathrm{v}_{\mathrm{j}} * \text { AccumDRI }_{\mathrm{j}}\right) \\ &=\quad \mathrm{x}=1 \\ & \text { TargetLR, } \\ & \mathrm{P}_{1(\mathrm{pr})} / \mathrm{l}_{1} * \mathrm{PAF}_{\mathrm{x}} * \mathrm{l}_{\mathrm{x}} * \text { AccumTrend }_{\mathrm{x}} * \text { ADRI }_{\mathrm{x}} / \mathrm{ADRI}_{1}, \\ & \mathrm{x}=2,3,4, \ldots, 30 \end{aligned}$ <br> $\mathrm{PAF}_{\mathrm{x}}$ is from the appropriate cell of IMP-1!J12:J41 |  |
| AA46:AA75 | Pricing Loss Ratio ( $\left.\mathrm{LR}_{\mathrm{x}(\mathrm{pr})}\right)$ | $=\mathrm{C}_{\mathrm{x}(\mathrm{pr})} / \mathrm{P}_{\mathrm{x}(\mathrm{pr})}$ |  |

## Individual Market Pool.xls - IMP Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AB46:AB75 | Pricing Expenses $\left(\operatorname{Exp}_{x(p r)}\right)$ | $\begin{aligned} =\mathrm{l}_{\mathrm{x}} * & \operatorname{Exppol}(\mathrm{x}) *(1+\operatorname{Inflation})^{\mathrm{x}-1} \\ & +\operatorname{Exp}_{\% \mathrm{C}(\mathrm{x})} * \mathrm{C}_{\mathrm{x}(\mathrm{pr})} \\ & +\operatorname{Comm}_{\mathrm{B}(\mathrm{x})} * \mathrm{P}_{1(\mathrm{pr})} / \mathrm{l}_{1} * \mathrm{l}_{\mathrm{x}} \\ & +\operatorname{Comm}_{\mathrm{R}(\mathrm{x})} *\left[\mathrm{P}_{\mathrm{x}(\mathrm{pr})}-\left(\mathrm{P}_{1(\mathrm{pr})} / \mathrm{l}_{1} * \mathrm{l}_{\mathrm{x}}\right)\right] \\ & + \text { Expoth\%P(x) } * \mathrm{P}_{\mathrm{x}(\mathrm{pr})} \\ & + \text { MinAssess } \% * \mathrm{P}_{\mathrm{x}(\mathrm{pr})} \end{aligned}$ <br> $\operatorname{Exp}_{\operatorname{Pol}(\mathrm{x})}$ is from the appropriate cell of IMP-1!E12:E41 Inflation is from Global Assumptions!B64 <br> Exp $\% \mathrm{C}(\mathrm{x})$ is from the appropriate cell of IMP-1!F12:F41 Comm $_{\mathrm{B}(\mathrm{x})}$ is from the appropriate cell of IMP-1!G12:G41 Comm $_{\mathrm{R}(\mathrm{x})}$ is from the appropriate cell of IMP-1!H12:H41 Expoth\%P(x) is from the appropriate cell of IMP-1!I12:I41 |  |
| AC46:AC75 | Pricing Expense as a Percentage of Pricing Premium | $=\operatorname{Exp}_{\mathrm{x}(\mathrm{pr})} / \mathrm{P}_{\mathrm{x}(\mathrm{pr})}$ |  |
| AD46:AD75 | Pricing Operating Gain $\left(\right.$ Gain $\left._{\mathrm{x}(\mathrm{pr})}\right)$ | $=\mathrm{P}_{\mathrm{x}(\mathrm{pr})}-\mathrm{C}_{\mathrm{x}(\mathrm{pr})}-\operatorname{Exp}_{\mathrm{x}(\mathrm{pr})}$ |  |
| AE46:AE75 | Pricing Gain as a Percentage of Pricing Premium | $=\mathrm{Gain}_{\mathrm{x}(\mathrm{pr})} / \mathrm{P}_{\mathrm{x}(\mathrm{pr})}$ |  |

## Individual Market Pool.xls - IMP Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| T81 | Interest (int) | From Global Assumptions!B63 |  |
| W77 | Simple Sum of Pricing Claims (SumClaims) | $=\sum_{x=1}^{30} C_{x(p r)}$ |  |
| Z77 | Simple Sum of Pricing Premiums (SumPrem) | $=\sum_{\mathrm{x}=1}^{30} \mathrm{P}_{\mathrm{x}(\mathrm{pr})}$ |  |
| AA77 | Pricing Loss Ratio, Using Simple Sums | = SumClaims / SumPrem |  |
| AB77 | Simple Sum of Pricing <br> Expenses <br> (SumExp) | $=\sum_{\mathrm{x}=1}^{30} \operatorname{Exp}_{\mathrm{x}(\mathrm{pr})}$ |  |
| AC77 | Pricing Expense Ratio, Using Simple Sums | = SumExp / SumPrem |  |
| AD77 | Simple Sum of Pricing Gains (SumGain) | $=\sum_{x=1}^{30} \operatorname{Gain}_{\mathrm{x}(\mathrm{pr})}$ |  |
| AE77 | Pricing Gain Ratio, Using Simple Sums | = SumGain / SumPrem |  |

## Individual Market Pool.xls - IMP Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| W78 | Present Value of Pricing Claims over 10 Years (PVClaims ${ }_{10}$ ) | $=\mathrm{NPV}_{\text {int }}\left(\mathrm{C}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}, \quad$ where NPV is taken over $\mathrm{x}=1,2,3, \ldots .10$ |  |
| Z78 | Present Value of Pricing Premiums over 10 Years (PVPrem $_{10}$ ) | $=\mathrm{NPV}_{\text {int }}\left(\mathrm{P}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}, \quad$ where NPV is taken over $\mathrm{x}=1,2,3, \ldots .10$ |  |
| AA78 | Pricing Loss Ratio, Using 10-Year NPVs | $=$ PVClaims $_{10} /$ PVPrem $_{10}$ |  |
| AB78 | Present Value of Pricing Expenses over 10 Years (PVExp ${ }_{10}$ ) | $=N P V_{\text {int }}\left(\operatorname{Exp}_{x(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}$, where NPV is taken over $\mathrm{x}=1,2,3, \ldots .10$ |  |
| AC78 | Pricing Expense Ratio, Using 10-Year NPVs | $=$ PVExp $_{10} /$ PVPrem $_{10}$ |  |
| AD78 | Present Value of Pricing Gains over 10 Years $\left(\right.$ PVGain $\left._{10}\right)$ | $=\operatorname{NPV}_{\mathrm{int}}\left(\operatorname{Gain}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}$ <br> where NPV is taken over $x=1,2,3, \ldots .10$ |  |
| AE78 | Pricing Gain Ratio, Using 10-Year NPVs | $=$ PVGain $_{10} /$ PVPrem $_{10}$ |  |

## Individual Market Pool.xls - IMP Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| W79 | Present Value of Pricing Claims over 30 Years (PVClaims ${ }_{30}$ ) | $=\mathrm{NPV}_{\text {int }}\left(\mathrm{C}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}, \quad$ where NPV is taken over $\mathrm{x}=1,2,3, \ldots .30$ |  |
| Z79 | Present Value of Pricing Premiums over 30 Years (PVPrem 30 ) | $=\operatorname{NPV}_{\text {int }}\left(\mathrm{P}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}, \quad$ where NPV is taken over $\mathrm{x}=1,2,3, \ldots .30$ |  |
| AA79 | Pricing Loss Ratio, Using 30-Year NPVs | $=$ PVClaims $_{30} /$ PVPrem $_{30}$ |  |
| AB79 | Present Value of Pricing Expenses over 30 Years (PVExp ${ }_{30}$ ) | $=\operatorname{NPV}_{\text {int }}\left(\operatorname{Exp}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}$, where NPV is taken over $\mathrm{x}=1,2,3, \ldots .30$ |  |
| AC79 | Pricing Expense Ratio, Using 30-Year NPVs | $=$ PVExp $_{30} /$ PVPrem $_{30}$ |  |
| AD79 | Present Value of Gains over 30 Years <br> $\left(\right.$ PVGain $\left._{30}\right)$ | $=\mathrm{NPV}_{\mathrm{int}}\left(\operatorname{Gain}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}$ <br> where NPV is taken over $\mathrm{x}=1,2,3, \ldots .30$ |  |
| AE79 | Pricing Gain Ratio, Using 30-Year NPVs | $=$ PVGain $_{30} /$ PVPrem $_{30}$ |  |

## Individual Market Pool.xls - IMP Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| W80 | PV of Pricing Claims as a Percentage of PV of Pricing Premium | $=$ PVClaims $_{30} /$ PVPrem $_{30}$ | Model calculations produce a stream of premiums such that this is equal to the target lifetime loss ratio. |
| Z80 | PV of Pricing Premium as a Percentage of PV of Pricing Premium | $=$ PVPrem $_{30} /$ PVPrem $_{30}$ | Identically equal to 1 |
| AB80 | PV of Pricing Expenses as a Percentage of PV of Pricing Premium | $=$ PVExp $_{30} /$ PVPrem $_{30}$ | Same as AC79 |
| AD80 | PV of Pricing Gain as a Percentage of PV of Pricing Premium | $=$ PVGain $_{30} /$ PVPrem $_{30}$ | Same as AE79 |
| AH46:AH75 | Composite Loss Ratio by Projection Year for Block 1 | $=\mathrm{LR}_{\mathrm{z}, 1}$ |  |
| AJ46:BM75 | Weighting Factor by Cohort for Block 1 $\left(W_{z, x, 1}\right)$ | $=\quad \begin{aligned} & 0, \\ & \left(1+\text { AgingTrend }^{z} * \text { AccumDRI }_{x} *\left(l_{\text {li,y,1(st) }}+l_{z, y, 1(\mathrm{im})}\right),\right. \end{aligned} \quad \begin{array}{r} \mathrm{y}<1 \text { or } \mathrm{y}>20 \\ \text { otherwise } \end{array}$ <br> AgingTrend is from Global Assumptions!C22 <br> $\mathrm{l}_{2, \mathrm{y}, 1(\mathrm{st})}$ is from the appropriate cell of IMP-1!AC51:BF80 <br> $\mathrm{l}_{\mathrm{z}, \mathrm{y}, 1(\mathrm{im})}$ is from the appropriate cell of IMP-1!AC89:BF118 | Note that in this table, columns represent projection years, rows represent durations, and diagonals represent issue years. |

## Individual Market Pool.xls - IMP Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AJ78:BM78 | Composite Loss Ratio by Projection Year for Block 1 $\left(\mathrm{LR}_{z, 1}\right)$ | $=\left(\sum_{\mathrm{i}=1}^{30} \mathrm{~W}_{\mathrm{z}, \mathrm{i}, 1} * \mathrm{LR}_{\mathrm{i}(\mathrm{pr})}\right) / \sum_{\mathrm{j}=1}^{30} \mathrm{~W}_{\mathrm{z}, \mathrm{j}, 1}$ | Summations are over all positive durations for a given projection year. |
| AJ79:BM79 | Total Weighting Factor by Projection Year for Block 1 | $=\sum_{x=1}^{30} W_{z, x, 1}$ |  |

## Individual Market Pool.xls - IMP - Global

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| D4 | Initial Reference Premium (InitRefPrem) | From Global Assumptions!C24 |  |
| D5 | Initial Reference Claim Cost for Standard Lives <br> (InitRefClaims ${ }_{\mathrm{st}}$ ) | From Global Assumptions!D49 |  |
| D6 | Initial Reference Claim Cost for Impaired Lives (InitRefClaims ${ }_{i m}$ ) | From Global Assumptions!D60 |  |
| B12:B41 | Base Lapse Rates for Standard Lives (Baseq $_{\mathrm{x}(\mathrm{st})}$ ) | From the appropriate cell of Global Assumptions!D29:D33 |  |
| C12:C41 | Base Lapse Rates for Impaired Lives ( Baseq $_{x(\text { (im) }}$ ) | From Global Assumptions!C54 |  |
| D12:D41 | Duration Factor ( $\mathrm{DF}_{\mathrm{x}}$ ) | From the appropriate cell of Global Assumptions!B77:B81 |  |
| E12:E41 | Per Policy Expense Rates $\left(\operatorname{Exp}_{\text {Pol(x) }}\right)$ | From the appropriate cell of Global Assumptions!B70:B74 |  |

## Individual Market Pool.xls - IMP - Global

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| F12:F41 | Percentage-of-Claims <br> Expense Rates <br> (Exp\%c(x)) | From the appropriate cell of Global Assumptions!C70:C74 |  |
| G12:G41 | Base Commission Rates $\left(\mathrm{Comm}_{\mathrm{B}(\mathrm{x})}\right)$ | From the appropriate cell of Global Assumptions!D70:D74 |  |
| H12:H41 | Renewal Commission Rates $\left(\mathrm{Comm}_{\text {R(x) }}\right)$ | From the appropriate cell of Global Assumptions!E70:E74 |  |
| I12:I41 | Other Premium-Related Expense Rates (Expoth\%P(x)) | From the appropriate cell of Global Assumptions!F70:F74 |  |
| J12:J41 | Premium Age Factor $\left(\mathrm{PAF}_{\mathrm{x}}\right)$ | $\begin{array}{llr} \hline= & 1, & x=1 \\ & \operatorname{PAF}_{x-1} *(1+\text { PremGrowthAge }) & x=2,3,4, \ldots, 30 \end{array}$ <br> PremGrowthAge is from Global Assumptions!C25 |  |
| K12:K41 | Rate of Impairment $\left(\mu_{\mathrm{x}}\right)$ | From the appropriate cell of Global Assumptions!E43:E47 |  |
| L12:L41 | Durational Rate Increase | From the appropriate cell of IMP Assumptions!X46:X75 |  |
| O12:O41 | Reference Premium ( RefPrem $_{\mathrm{x}}$ ) | $\begin{array}{\|lr} \hline= & \text { InitRefPrem, } \quad \begin{array}{r} x=1 \\ \\ \\ \text { RefPrem }_{x-1} *\left(1+\text { ActTrend }_{x-1}\right), \end{array} \\ x=2,3,4, \ldots, 30 \end{array}$ |  |

## Individual Market Pool.xls - IMP - Global

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| P12:P41 | Baseline Sales (BaseSales ${ }^{\text {x }}$ ) | From the appropriate cell of Global Assumptions!D4:D11 |  |
| Q12:Q41 | Standard Lives Reference Claims <br> (RefClaims $_{\mathrm{x}(\mathrm{st})}$ ) | $\begin{array}{rlr} \hline= & \text { InitRefClaims }_{\text {st, }} & x=1 \\ & \text { C }_{x-1(\mathrm{st})} *\left(1+\text { ActTrend }_{x-1}\right), & x=2,3,4, \ldots, 30 \end{array}$ |  |
| R12:R41 | Impaired Lives Reference <br> Claims <br> (RefClaims $_{x(i m)}$ ) | $\begin{array}{rlr} \hline= & \text { InitRefClaims }_{\text {im }}, & x=1 \\ & \text { RefClaims }_{x-1(\mathrm{im})} *\left(1+\text { ActTrend }_{\mathrm{x}-1}\right), & x=2,3,4, \ldots, 30 \end{array}$ |  |
| S12:S41 | Actual Trend (ActTrend ${ }_{z}$ ) | From the appropriate cell of Global Assumptions!B106:B135 |  |
| V12:V41 | Market New Business Rate (MarketRate ${ }_{z}$ ) | $\mathrm{P}_{1(\mathrm{pr})}$ is from IMP Assumptions!Z46 <br> $\mathrm{l}_{1}$ is from IMP Assumptions!T46 |  |

## Individual Market Pool.xls - IMP - Global

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| W12:W41 | Company New Business Rate | $=\sum_{b=1}^{10} \text { ComNewBusnRate }_{\mathrm{z}, \mathrm{~b}}$ <br> Note: In this and subsequent formulas on the IMP-Global tab, whenever a sum is taken over multiple blocks, the values are taken from tab IMP-1 for the first block, from tab IMP-2 for the second block, etc. | Sum of premium rate for projection year z across all ten blocks; this and other aggregations of premium rates and lapse rates across blocks implicitly assume that the blocks do not overlap. |
| X12:X41 | Risk Pool Premium (IMPPrem ${ }_{z}$ ) | $=\text { MarketRate }_{\mathrm{z}} * \text { PoolP\% }^{2}$ <br> PoolP\% is from IMP Assumptions!E15 |  |
| AA12:BD41 | Aggregate New Business Sales by Cohort (AggSales ${ }_{z, \mathrm{y}}$ ) | $=\sum_{b=1}^{10} \text { Sales }_{z, y, b}$ |  |
| AA42:BD42 | Aggregate New Business Sales for Issue Year y | $=\sum_{z=1}^{30} \text { AggSales }_{z, y}$ |  |
| BG12:CJ41 | Aggregate Actual Lapse Rates for Standard Lives by Cohort | $=\sum_{\mathrm{b}=1}^{10} \mathrm{q}_{\mathrm{z}, \mathrm{y}, \mathrm{~b}(\mathrm{st})}$ |  |

## Individual Market Pool.xls - IMP - Global

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| CM12:DP41 | Aggregate Newly Impaired Lives by Cohort <br> (AggNewImpLives ${ }_{z, \mathrm{y}}$ ) | $=\sum_{b=1}^{10} \text { NewImpLives }_{\text {zy,b }}$ |  |
| CM42:DP42 | Aggregate Newly Impaired Lives for Issue Year y | $=\sum_{\mathrm{z}=1}^{30} \text { AggNewImpLives }_{\mathrm{z}, \mathrm{y}}$ |  |
| AA51:BD80 | Aggregate Enrollment of Standard Lives by Cohort $\left(\mathrm{Aggl}_{z, y(\mathrm{st})}\right)$ | $=\sum_{b=1}^{10} l_{\text {z,yb(st) }}$ |  |
| AA81:BD81 | Aggregate Enrollment of Standard Lives for Issue Year y | $=\sum_{\mathrm{z}=1}^{30} \mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}$ |  |
| BG51:CJ80 | Aggregate Actual Lapse Rates of Impaired Lives by Cohort | $=\sum_{\mathrm{b}=1}^{10} \mathrm{q}_{\mathrm{z}, \mathrm{y}, \mathrm{~b}(\mathrm{im})}$ |  |
| CM51:DP80 | Aggregate Rate of Transfers to Risk Pool by Cohort (AggPoolTrans\% ${ }_{\text {z,y }}$ ) | $=\sum_{b=1}^{10} \text { PoolTrans } \%_{z, \mathrm{y}, \mathrm{~b}}$ |  |
| AA89:BD118 | Aggregate Enrollment of Impaired Lives by Cohort $\left(\mathrm{Aggl}_{\mathrm{z,y(im})}\right)$ | $=\sum_{\mathrm{b}=1}^{10} l_{\text {z,yb(im) }}$ |  |

## Individual Market Pool.xls - IMP - Global

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AA119:BD119 | Aggregate Exposure of Impaired Lives for Issue Year y | $=\sum_{z=1}^{30} l_{z, y(i m)}$ |  |
| BG89:CJ118 | Aggregate Premium Rates after Durational Adjustment but Before Age Adjustment, by Cohort | $=\sum_{b=1}^{10} \text { DurAdjPremRate }_{\mathrm{z}, \mathrm{y}, \mathrm{~b}}$ |  |
| CM89:DP118 | Aggregate Age-Adjusted Premium Rates by Cohort (AggAgeDurAdjPrem ${ }_{z, y}$ ) | $=\sum_{\mathrm{b}=1}^{10} \text { AgeAdjPremRate }_{\mathrm{z}, \mathrm{y}, \mathrm{~b}}$ |  |
| AA126:BD155 | Aggregate Age-Adjusted Market New Business Premium Rates by Cohort | $=\sum_{b=1}^{10} \text { AgeAdjMktNewBusnRate }{ }_{z, y, b}$ |  |
| BG126:CJ155 | Aggregate Standard Lives Claim Levels by Cohort (AggClaims ${ }_{z, y(s t)}$ ) | $=\sum_{b=1}^{10} \mathrm{C}_{\mathrm{z}, \mathrm{y}, \mathrm{~b}(\mathrm{st})}$ |  |
| CM126:DP155 | Aggregate Impaired Lives Claim Levels by Cohort (AggClaims $\left.{ }_{z, y(i m)}\right)$ | $=\sum_{b=1}^{10} C_{z, y, b(i m)}$ |  |
| AA164:BD193 | Aggregate Standard Lives Expense Levels by Cohort $\left(\operatorname{AggExp}_{z, y(s t)}\right)$ | $=\sum_{\mathrm{b}=1}^{10} \operatorname{Exp}_{\mathrm{z}, \mathrm{y}, \mathrm{~b}(\mathrm{st})}$ |  |

## Individual Market Pool.xls - IMP - Global

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| BG164:CJ193 | Aggregate Impaired Lives Expense Levels by Cohort $\left(\operatorname{AggExp}_{z, y(i m)}\right)$ | $=\sum_{b=1}^{10} \operatorname{Exp}_{z, y, b(i m)}$ |  |
| CM164:DP193 | Aggregate Average Expense Levels by Cohort | $=\begin{array}{ll} 0, & \operatorname{Aggl}_{z, y(s t)}+\operatorname{Aggl}_{z, y(\mathrm{im})}=0 \\ & \left.\begin{array}{l} {\left[\left(\operatorname{Aggl}_{z, y(\mathrm{st})} * \operatorname{AggExp}_{z, y(\mathrm{st})}\right)\right)} \\ \left(\operatorname{Aggl}_{z, y(\mathrm{st})}+\operatorname{Aggl}_{z, y(\mathrm{im})}\right), \end{array}\left(\operatorname{Aggl}_{z, y(\mathrm{im})} * \operatorname{AggExp}_{z, y(\mathrm{~m})}\right)\right] / \end{array}$ |  |
| DS164:DS193 | Aggregate Enrollment of Standard Lives by Projection Year $\left(\operatorname{Aggl}_{z(\mathrm{st})}\right)$ | $=\sum_{b=1}^{10} l_{z, \mathrm{~b}(\mathrm{st})}$ |  |
| DS194 | Aggregate Enrollment of Standard Lives | $=\sum_{\mathrm{z}=1}^{30} \operatorname{Aggl}_{\mathrm{z}_{(\mathrm{st})}}$ |  |
| DT164:DT193 | Aggregate Premium of Standard Lives by Projection Year (AggPremium $\left._{z(\mathrm{stt}}\right)$ | $=\sum_{\mathrm{b}=1}^{10} \mathrm{P}_{\mathrm{z}, \mathrm{~b}(\mathrm{st})}$ |  |
| DT194 | Aggregate Premium of Standard Lives <br> (AggPremium $_{\mathrm{st}}$ ) | $=\sum_{\mathrm{z}=1}^{30} \text { AggPremium }_{\mathrm{z}(\mathrm{st})}$ |  |

## Individual Market Pool.xls - IMP - Global

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DU164:DU193 | Aggregate Claims of Standard Lives by Projection Year (AggClaims $_{z(s t)}$ ) | $=\sum_{b=1}^{10} \mathrm{C}_{\mathrm{z}, \mathrm{~b}(\mathrm{st})}$ |  |
| DU194 | Aggregate Claims of Standard Lives (AggClaims ${ }_{\mathrm{st}}$ ) | $=\sum_{\mathrm{z}=1}^{30} \text { AggClaims }_{\mathrm{z}(\mathrm{st})}$ |  |
| DV164:DV193 | Aggregate Loss Ratio by Projection Year for Standard Lives | $=$ AggClaims $_{\text {z(st) }} /$ AggPremium $_{\text {z(st) }}$ |  |
| DV194 | Aggregate Loss Ratio for Standard Lives | $=$ AggClaims $_{\text {st }} /$ AggPremium $_{\text {st }}$ |  |
| DY164:DY193 | Aggregate Enrollment of Impaired Lives by Projection Year $\left(\mathrm{Aggl}_{\text {(im) }}\right)$ | $=\sum_{b=1}^{10} l_{z, b(i m)}$ |  |
| DY194 | Aggregate Exposure of Impaired Lives | $=\sum_{\mathrm{z}=1}^{30} \operatorname{Aggl}_{\mathrm{z}(\mathrm{im})}$ |  |

## Individual Market Pool.xls - IMP - Global

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DZ164:DZ193 | Aggregate Premium of Impaired Lives by Projection Year (AggPremium ${ }_{z(i m)}$ ) | $=\sum_{b=1}^{10} \mathrm{P}_{\mathrm{z}, \mathrm{~b}(\mathrm{im})}$ |  |
| DZ194 | Aggregate Premium of Impaired Lives <br> $\left(\right.$ AggPremium $\left._{\mathrm{im}}\right)$ | $=\sum_{\mathrm{z}=1}^{30} \text { AggPremium }_{\mathrm{z}(\mathrm{im})}$ |  |
| EA164:EA193 | Aggregate Claims of Impaired Lives by Projection Year (AggClaims $\mathrm{z}_{\mathrm{z}(\mathrm{im})}$ ) | $=\sum_{b=1}^{10} \mathrm{C}_{\mathrm{z}, \mathrm{~b}(\mathrm{~m})}$ |  |
| EA194 | Aggregate Claims of Impaired Lives (AggClaims ${ }_{i m}$ ) | $=\sum_{\mathrm{z}=1}^{30} \text { AggClaims }_{\mathrm{z}(\mathrm{im})}$ |  |
| EB165:EB193 | Aggregate Loss Ratio by Projection Year for Impaired Lives | $=$ AggClaims $_{\text {z(im) }} /$ AggPremium $_{\text {z(im) }}$, | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$. |
| EB194 | Aggregate Loss Ratio for Impaired Lives | $=$ AggClaims $_{\text {im }} /$ AggPremium $_{\text {im }}$ |  |
| ED164:ED193 | Aggregate Enrollment by Projection Year $\left(\mathrm{Aggl}_{\mathrm{z}}\right)$ | $=\sum_{b=1}^{10} l_{z, b}$ |  |

## Individual Market Pool.xls - IMP - Global

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| ED194 | Aggregate Exposure | $=\sum_{\mathrm{z}=1}^{30} \mathrm{Aggl}_{\mathrm{z}}$ |  |
| EE164:EE193 | Aggregate Premium by Projection Year <br> $\left(\right.$ AggPremium ${ }_{z}$ ) | $=\sum_{b=1}^{10} \mathrm{P}_{\mathrm{z}, \mathrm{~b}}$ |  |
| EE194 | Aggregate Premium (AggPremium) | $=\sum_{\mathrm{z}=1}^{30} \text { AggPremium }_{\mathrm{z}}$ |  |
| EF164:EF193 | Aggregate Claims by Projection Year <br> (AggClaims ${ }_{z}$ ) | $=\sum_{b=1}^{10} \mathrm{C}_{\mathrm{z}, \mathrm{~b}}$ |  |
| EF194 | Aggregate Claims (AggClaims) | $=\sum_{\mathrm{z}=1}^{30} \text { AggClaims }_{\mathrm{z}}$ |  |
| EG164:EG193 | Aggregate Pool Assessment by Projection Year (AggAssess ${ }_{z}$ ) | $=\sum_{\mathrm{b}=1}^{10} \operatorname{Assess}_{\mathrm{z}, \mathrm{~b}}$ |  |
| EG194 | Aggregate Pool Assessment | $=\sum_{z=1}^{30} \text { AggAssess }_{z}$ |  |

## Individual Market Pool.xls - IMP - Global

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| EH164:EH193 | $\left.\begin{array}{l}\text { Aggregate Gross Claims by } \\ \text { Projection Year } \\ \text { (AggGrossClaims }\end{array}\right)$ | $=\sum_{b=1}^{10}$ GrossC $_{z, b}$ | Represents paid claims <br> plus assessments. |
| EH194 | Aggregate Gross Claims <br> (AggGrossClaims) | $=\sum_{z=1}^{30}$ AggGrossClaims $_{z}$ |  |
| EI164:EI193 | Aggregate Gross Claims <br> PMPM by Projection Year | $=$ AggGrossClaims $_{z} /$ Aggl $_{z} / 12$ |  |
| EI194 | Aggregate Gross Claims <br> PMPM | $=$ AggGrossClaims / Aggl / 12 |  |
| EJ164:EJ193 | $\left.\begin{array}{l}\text { Aggregate Gross Loss Ratio } \\ \text { by Projection Year } \\ \text { (AggGLR }\end{array}\right)$ | $=$ AggGrossClaims $_{z} /$ AggPremium $_{z}$ |  |
| EJ194 | Aggregate Gross Loss Ratio | $=$ AggGrossClaims / AggPremium |  |
| EK164:EK193 | Aggregate Expected Loss <br> Ratio by Projection Year <br> (AggExpectedLR | From appropriate cell of IMP Assumptions!AH46:AH75 |  |

## Individual Market Pool.xls - IMP - Global

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| EM164:EM193 | Aggregate Rolling TwoYear Loss Ratio | $=\begin{aligned} & \text { AggClaims }_{1} / \text { AggPremium }_{1}, \\ & =\quad \\ & \left(\text { AggClaims }_{z-1}+\text { AggClaims }_{\mathrm{z}}\right) / \\ & \left(\text { AggPremium }_{\mathrm{z}-1}+\text { AggPremium }_{\mathrm{z}}\right), \end{aligned}$ | $\begin{array}{r} \mathrm{z}=1 \\ \mathrm{z}=2,3,4, \ldots, 30 \end{array}$ | Note that this is on a net-of-assessments basis. |
| EN164:EN193 | Aggregate Premium Less <br> Aggregate Gross Claims by <br> Projection Year <br> (AggPminusAggGrossC ${ }_{z}$ ) | $=$ AggPremium $_{\mathrm{z}}-$ AggGrossClaims $_{\mathrm{z}}$ |  |  |
| EN194 | Aggregate Premium Less Aggregate Gross Claims | = AggPremium - AggGrossClaims |  |  |
| EO164:EO193 | Aggregate Expenses by Projection Year $\left(\mathrm{AggExp}_{z}\right)$ | $=\sum_{b=1}^{10} \operatorname{Exp}_{z, \mathrm{~b}}$ |  |  |
| EO194 | Aggregate Expenses (AggExp) | $=\sum_{\mathrm{z}=1}^{30} \operatorname{AggExp}_{\mathrm{z}}$ |  |  |
| EP164:EP193 | Aggregate Expense Ratio by Projection Year | $=\operatorname{AggExp}_{z} /$ AggPremium $_{z}$ |  |  |
| EP194 | Aggregate Expense Ratio | = AggExp / AggPremium |  |  |

## Individual Market Pool.xls - IMP - Global

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| EQ164:EQ193 | Aggregate Gain by Projection Year $\left(\right.$ AggGain $\left._{z}\right)$ | $=$ AggPremium $_{z}-$ AggGrossClaims $_{z}-$ AggExp $_{z}$ |  |
| EQ194 | Aggregate Gain (AggGain) | $=\sum_{\mathrm{z}=1}^{30} \text { AggGain }_{\mathrm{z}}$ |  |
| ER164:ER193 | Aggregate Gain as a Percentage of Aggregate Premium by Projection Year | $=$ AggGain $_{\text {z }} /$ AggPremium $_{\text {z }}$ |  |
| ER194 | Aggregate Gain as a Percentage of Aggregate Premium | = AggGain / AggPremium |  |
| ES164:ES193 | Aggregate Risk-Based Capital by Projection Year $\left(\mathrm{AggRBC}_{z}\right)$ | $=\text { AggPremium }_{z} * \text { RBC } \%$ <br> RBC\% is from Global Assumptions!D83 |  |
| ET164:ET193 | Aggregate Opportunity Cost of Capital by Projection Year $\left(\mathrm{AggOCC}_{z}\right)$ | $=-\operatorname{AggRBC}_{z} * \text { OCC\% }$ <br> OCC\% is from Global Assumptions!D84 |  |
| ET194 | Aggregate Opportunity Cost of Capital <br> (AggOCC) | $=\sum_{z=1}^{30} \mathrm{AggOCC}_{\mathrm{z}}$ |  |

## Individual Market Pool.xls - IMP - Global

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| EU164:EU193 | Aggregate Economic Gain by Projection Year (AggEconGain ${ }_{z}$ ) | $=$ AggGain $_{\mathrm{z}}+\mathrm{AggOCC}_{\mathrm{z}}$ |  |
| EU194 | Aggregate Economic Gain | = AggGain + AggOCC |  |
| EE197 | Present Value of Aggregate Premium (PVAggPremium) | $=N P V_{\text {int }}\left(\operatorname{AggPremium}_{z}\right) * \sqrt{1+\mathrm{int}}$ | For all of the following present value calculations, int is from Global <br> Assumptions!B63, and the present values are taken over $\mathrm{z}=1,2,3$, ..., 30. |
| EF197 | Present Value of Aggregate Claims (PVAggClaims) | $=N P V_{\text {int }}\left(\right.$ AggClaims $^{\text {z }}$ ) $* \sqrt{1+\mathrm{int}}$ |  |
| EG197 | Present Value of Aggregate Assessments (PVAggAssess) | $=N P V_{\text {int }}\left(\right.$ AggAssess $\left._{\text {z }}\right) * \sqrt{1+\mathrm{int}}$ |  |
| EH197 | Present Value of Gross Claims <br> (PVAggGrossClaims) | $=N P V_{\text {int }}\left(\right.$ AggGrossClaims $^{\text {z }}$ ) $* \sqrt{1+\mathrm{int}}$ |  |

## Individual Market Pool.xls - IMP - Global

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| EN197 | Present Value of Aggregate Premium Less Aggregate Claims (PVAggPminusAggGrossC) | $=\mathrm{NPV}_{\text {int }}\left(\right.$ AggPminusAggGrossC $\left.\mathrm{z}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| EO197 | Present Value of Aggregate <br> Expenses <br> (PVAggExp) | $=\mathrm{NPV}_{\mathrm{int}}\left(\operatorname{AggExp}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| EQ197 | Present Value of Aggregate Gain (PVAggGain) | $=\mathrm{NPV}_{\text {int }}\left(\text { AggGain }_{z}\right) * \sqrt{1+\mathrm{int}}$ |  |
| ET197 | Present Value of Aggregate Opportunity Cost of Capital (PVAggOCC) | $=\mathrm{NPV}_{\mathrm{int}}\left(\mathrm{AggOCC}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| EU197 | Present Value of Aggregate Economic Gain (PVAggEconGain) | $=\mathrm{NPV}_{\text {int }}\left(\right.$ AggEconGain $\left.^{\prime}\right) * \sqrt{1+\mathrm{int}}$ |  |
| EE198 | Present Value of Aggregate Premium as a Percentage of Present Value of Aggregate Premium | = PVAggPremium / PVAggPremium | Identically equal to $100 \%$. |

## Individual Market Pool.xls - IMP - Global

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| EF198 | Present Value of Aggregate <br> Claims as a Percentage of <br> Present Value of Aggregate <br> Premium | $=$ PVAggClaims / PVAggPremium |  |
| EG198 | Present Value of Aggregate <br> Assessments as a Percentage <br> of Present Value of <br> Aggregate Premium | $=$ PVAggAssess / PVAggPremium |  |
| EH198 | Present Value of Aggregate <br> Gross Claims as a <br> Percentage of Present Value <br> of Aggregate Premium | $=$ PVAggGrossClaims / PVAggPremium |  |
| EN198 | Present Value of Aggregate <br> Premium Less Aggregate <br> Gross Claims as a <br> Percentage of Present Value <br> of Aggregate Premium | $=$ PVAggPminusAggGrossC / PVAggPremium |  |
| EO198 | Present Value of Aggregate <br> Expenses as a Percentage of <br> Present Value of Aggregate <br> Premium | $=$ PVAggExp / PVAggPremium |  |

## Individual Market Pool.xls - IMP - Global

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| EQ198 | Present Value of Aggregate Gain as a Percentage of Present Value of Aggregate Premium | = PVAggGain / PVAggPremium |  |  |
| ET198 | Present Value of Aggregate Opportunity Cost of Capital as a Percentage of Present Value of Aggregate Premium | = PVAggOCC / PVAggPremium |  |  |
| EU198 | Present Value of Aggregate Economic Gain as a Percentage of Present Value of Aggregate Premium | = PVAggEconGain / PVAggPremium |  |  |
| AA204:BD233 | Aggregate Age-Adjusted Risk Pool Premium Rates by Cohort <br> (AggAgeAdjPrem <br> Rate $\left._{\text {z,y(pool) }}\right)$ | $\begin{aligned} &=\quad 0, \\ & \text { IMPPrem }_{z} * \operatorname{PAF}_{x} \end{aligned}$ | $\begin{aligned} & x<1 \\ & x \geq 1 \end{aligned}$ |  |
| BG204:CJ233 | Aggregate New Transfers of Impaired Lives from Company to Risk Pool by Cohort (AggPoolEntrants $_{\text {zi, }}$ ) | $=\quad \begin{array}{ll} = & \text { Aggl }_{z-1, y(\mathrm{im})} * \text { AggPoolTrans }_{2}{ }_{z, y}, \end{array}$ | $\begin{aligned} & \mathrm{x} \leq 1 \\ & \mathrm{x}>1 \end{aligned}$ |  |

## Individual Market Pool.xls - IMP - Global

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| BG234:CJ234 | Aggregate New Transfers of Impaired Lives from Company to Risk Pool by Projection Year (AggPoolEntrants ${ }_{z}$ ) | $=\sum_{\mathrm{z}=1}^{30} \text { AggPoolEntrants }_{\mathrm{z}, \mathrm{y}}$ |  |
| CM204:DP233 | Aggregate Lapse Rates of Pool Participants by Cohort $\left(\mathrm{Aggq}_{z, \mathrm{y} \text { (pool) }}\right)$ | $\begin{array}{lll} =0, & \mathrm{x} \leq 1 \\ \mathrm{q}_{\text {pool }}, & \mathrm{x}>1 \end{array}$ <br> $\mathrm{q}_{\text {pool }}$ is from IMP Assumptions!D30 | Applies to risk pool participants that originally came from this company. |
| AA241:BD270 | Aggregate Enrollment of Risk Pool by Cohort $\left(\mathrm{Aggl}_{z, \mathrm{y}(\text { pool })}\right)$ | $\begin{array}{lll} \hline=\quad \text { AggPoolEntrants }_{z, y}, & x \leq 1 \\ & \text { AggPoolEntrants }_{z, y}+\left[\operatorname{Aggl}_{z-1, y(\text { pool })} *\left(1-\text { Aggq }_{z, y(\text { pool })}\right)\right], & x>1 \end{array}$ |  |
| AA271:BD271 | Aggregate Enrollment of Risk Pool by Projection Year | $=\sum_{\mathrm{z}=1}^{30} \operatorname{Aggl}_{\mathrm{z}, \mathrm{y}(\text { pool })}$ |  |
| BG241:CJ270 | Aggregate Claims of Risk Pool Participants by Cohort (AggClaims $\left._{z, y(\text { pool })}\right)$ | $=\begin{array}{ll} 0, & \mathrm{x}<1 \\ \text { RefClaims }_{(\mathrm{im}),}, & \mathrm{x}=1 \\ \text { AggClaims }_{\mathrm{z}-1, \mathrm{y}(\text { pool })} *\left(1+\text { ActTrend }_{\mathrm{z}-1}\right) *(1+\text { AgingTrend }), \mathrm{x}>1 \end{array}$ <br> AgingTrend is from Global Assumptions!C22 |  |
| CM241:DP270 | Aggregate Pool Assessment Rate by Cohort | $=$ AggAgeAdjPremRate $_{\text {z,y }} *$ AggAssess $^{\text {\% }}$ |  |

## Individual Market Pool.xls - IMP - Global

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DS241:DS270 | Aggregate Enrollment of Risk Pool by Projection Year <br> $\left(\mathrm{Aggl}_{z(\text { pool })}\right)$ | $=\sum_{\mathrm{y}=1}^{20} \mathrm{Aggl}_{z, \mathrm{y}(\mathrm{pool})}$ |  |
| DS271 | Aggregate Exposure of Risk Pool | $=\sum_{z=1}^{30} \operatorname{Aggl}_{z(\text { pool })}$ |  |
| DT241:DT270 | Aggregate Premium of Risk Pool by Projection Year (AggPremium $_{\text {z(pool) }}$ ) | $=\sum_{\mathrm{y}=1}^{20} \operatorname{AggAgeAdjPremRate}_{\mathrm{z}, \mathrm{y}(\text { pool })} * \operatorname{Aggl}_{\mathrm{z}, \mathrm{y}(\mathrm{pool})} * 12$ |  |
| DT271 | Aggregate Premium of Risk Pool $\left(\text { AggPremium }_{\text {pool }}\right)$ | $=\sum_{\mathrm{z}=1}^{30} \text { AggPremium }_{\mathrm{Z}(\text { pool })}$ |  |
| DU241:DU270 | Aggregate Pool Expenses by Projection Year $\left(\operatorname{AggExp}_{z(\text { pool })}\right)$ | $\begin{aligned} = & \left(\text { AggPremium }_{z(\text { pool })} * \text { PoolExp }_{\% \mathrm{P}}\right)+\left(\text { AggClaims }_{\mathrm{z}(\text { pool })} * \text { PoolExp } \% \mathrm{C}\right) \\ & +\left(\operatorname{Aggl}_{\mathrm{z}(\text { pool })} * \text { PoolExp }_{\text {Pol }} * 12\right) \end{aligned}$ <br> PoolExp\%p is from IMP Assumptions!K9 <br> PoolExp\%c is from IMP Assumptions!K10 <br> PoolExppol is from IMP Assumptions!K11 |  |
| DU271 | Aggregate Pool Expenses | $=\sum_{\mathrm{z}=1}^{30} \operatorname{AggExp}_{\mathrm{z}(\text { pool })}$ |  |

## Individual Market Pool.xls - IMP - Global

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DV241:DV270 | Aggregate Assessments by Projection Year <br> (AggAssess ${ }_{z}$ ) | $=\sum_{b=1}^{10} \operatorname{Assess}_{\text {z,b }}$ | $\begin{aligned} & \text { Same as } \\ & \text { EG164:EG193. } \end{aligned}$ |
| DV271 | Aggregate Assessments | $=\sum_{z=1}^{30} \text { AggAssess }_{z}$ |  |
| DW241:DW270 | Aggregate Assessment Reserve by Projection Year $\left(\right.$ AggAssess $\left.V_{z}\right)$ | $\begin{aligned} & 0, \\ & \max \left\{0,\left[\operatorname{AggAssess}_{\mathrm{z}-1} *(1+\text { int })\right]+\operatorname{AggVContr}_{\mathrm{z}-1}\right\}, \\ & z=2,3,4, \ldots, 30 \end{aligned}$ <br> int is from Global Assumptions!B63 |  |
| DX241:DX270 | Aggregate Assessment Rate by Projection Year (AggAssess\% ${ }_{z}$ ) | $=\max \left\{\right.$ MinAssess\%, $\min \left[\right.$ MaxAssess $^{2},\left(\right.$ AggClaims $_{z(\text { pool })}+$ AggExp $_{z(\text { pool })}$ <br> - AggPremium $_{z(\text { pool })}-\left(\right.$ AggAssessV $_{z} *$ int $\left.)\right) /$ AggPremium $\left.\left._{z}\right]\right\}$ <br> MinAssess\% is from IMP Assumptions !D18 <br> MaxAssess\% is from IMP Assumptions!D19 <br> int is from Global Assumptions!B63 | Excess pool claims less interest earned on the assessment reserve, as a percentage of premium. |
| DY241:DY270 | Aggregate Risk Pool Loss Ratio by Projection Year | $=\begin{array}{ll} 0, & \text { AggPremium }_{z(\text { pool })} \leq 0 \\ \text { AggClaims }_{z(\text { pool })} / \text { AggPremium }_{z(\text { pool }),}, & \text { AggPremium }_{z(\text { pool })}>0 \end{array}$ |  |

## Individual Market Pool.xls - IMP - Global

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DY271 | Aggregate Risk Pool Loss Ratio | $=\begin{array}{ll} 0, & \text { AggPremium }_{\text {(pool) }} \leq 0 \\ \text { AggClaims }_{(\text {pool) })} / \text { AggPremium }_{\text {(pool) }}, & \text { AggPremium }_{\text {(pool) }}>0 \end{array}$ |  |
| DZ241:DZ270 | Aggregate per Capita Assessments by Projection Year | $=$ AggAssess $_{\text {L }} / \mathrm{Aggl}_{\mathrm{z}}$ |  |
| EA241:EA270 | Aggregate Risk Pool Claims by Projection Year (AggClaims $\left._{\text {z(pool) }}\right)$ | $=\sum_{\mathrm{y}=1}^{20} \operatorname{AggClaims}_{\mathrm{z}, \mathrm{y}(\text { pool })} * \operatorname{Aggl}_{\mathrm{z}, \mathrm{y}(\text { pool })} * 12$ |  |
| EA271 | Aggregate Risk Pool Claims (AggClaims ${ }_{\text {pool }}$ ) | $=\sum_{z=1}^{30} \text { AggClaims }_{z(\text { pool })}$ |  |
| EB241:EB270 | Aggregate Risk Pool Margin by Projection Year <br> $\left(\right.$ AggMargin $\left._{\text {z(pool) }}\right)$ | $=$ AggPremium $_{\text {z(pool) }}+$ AggAssess $_{\text {z }}-$ AggClaims $_{\text {z(pool) }}-$ AggExp $_{\text {z(pool) }}$ |  |
| EB271 | Aggregate Risk Pool Margin | $=\sum_{\mathrm{z}=1}^{30} \operatorname{AggMargin}_{\mathrm{Z}(\text { pool })}$ |  |

## Individual Market Pool.xls - IMP - Global

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| EC241:EC270 | Aggregate Contribution to Assessment Reserve by Projection Year (AggVContr ${ }_{z}$ ) |  <br> int is from Global Assumptions!B63 |  |
| ED241:ED270 | Aggregate Unsubsidized Risk Pool Losses by Projection Year (AggUnsubLoss $\left._{z(\text { pool })}\right)$ | $=$ AggMargin $_{\text {z(pool) }}-$ AggVContr $_{\text {z }}$ | A negative value would represent an unsubsidized loss. |
| ED271 | Aggregate Unsubsidized Risk Pool Losses | $=\sum_{z=1}^{30} \text { AggUnsubLoss }_{z(\text { pool })}$ |  |
| DT274 | Present Value of Aggregate Risk Pool Premium (PVAggPremium $_{\text {pool }}$ ) | $=\operatorname{NPV}_{\text {int }}\left(\operatorname{AggPremium}_{\mathrm{z}(\mathrm{pooll})}\right) * \sqrt{1+\mathrm{int}}$ <br> In this and subsequent present value calculations, int is from Global Assumptions!B63 and the present values are taken over $\mathrm{z}=1,2,3, \ldots$, 30 |  |
| DU274 | Present Value of Aggregate Risk Pool Expenses (PVAggExp ${ }_{\text {pool }}$ ) | $=N P V_{\text {int }}\left(\operatorname{AggExp}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |

## Individual Market Pool.xls - IMP - Global

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DV274 | Present Value of Aggregate Assessments (PVAggAssess) | $=\mathrm{NPV}_{\text {int }}\left(\right.$ AggAssess $\left._{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| EA274 | Present Value of Aggregate Risk Pool Claims <br> (PVAggClaims ${ }_{\text {pool }}$ ) | $=\operatorname{NPV}_{\text {int }}\left(\text { AggClaims }_{z(\text { pool })}\right) * \sqrt{1+\mathrm{int}}$ |  |
| EB274 | Present Value of Aggregate Risk Pool Margin (PVAggMargin $_{\text {pool }}$ ) | $=\operatorname{NPV}_{\text {int }}\left(\operatorname{AggMargin}_{\mathrm{z}(\text { pool })}\right) * \sqrt{1+\mathrm{int}}$ |  |
| ED274 | Present Value of Aggregate Unsubsidized Risk Pool Losses <br> (PVAggUnsubLoss ${ }_{\text {pool }}$ ) | $=\operatorname{NPV}_{\text {int }}\left(\text { AggUnsubLoss }_{z(\text { pool })}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DT275 | Present Value of Aggregate Risk Pool Premium as a Percentage of Present Value of Aggregate Risk Pool Premium | $=$ PVAggPremium $_{\text {pool }} /$ PVAggPremium ${ }_{\text {pool }}$ | Identically equal to $100 \%$. |
| DU275 | Present Value of Aggregate Risk Pool Expenses as a Percentage of Present Value of Aggregate Risk Pool Premium | $=$ PVAggExp ${ }_{\text {pool }} /$ PVAggPremium ${ }_{\text {pool }}$ |  |

## Individual Market Pool.xls - IMP - Global

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| DV275 | Present Value of Aggregate <br> Assessments as a Percentage <br> of Present Value of <br> Aggregate Risk Pool <br> Premium | $=$ PVAggAssess / PVAggPremium pool |  |
| EA275 | Present Value of Aggregate <br> Risk Pool Claims as a <br> Percentage of Present Value <br> of Aggregate Risk Pool <br> Premium | $=$ PVAggClaims $_{\text {pool }} /$ PVAggPremium $_{\text {pool }}$ |  |
| EB275 | Present Value of Aggregate <br> Risk Pool Margin as a <br> Percentage of Present Value <br> of Aggregate Risk Pool <br> Premium | $=$ PVAggMargin $_{\text {pool }} /$ PVAggPremium $_{\text {pool }}$ |  |
| ED275 | Present Value of Aggregate <br> Unsubsidized Risk Pool <br> Losses as a Percentage of <br> Present Value of Aggregate <br> Risk Pool Premium | $=$ PVAggUnsubLoss $_{\text {pool }} /$ PVAggPremium $_{\text {pool }}$ |  |

Note: Cells EX164:FI194 contain calculations analogous to those in cells ED164:EU194 for the aggregate experience of blocks 1-5 only. Similarly, the calculations in cells FK164:FK194 are analogous to those in cells DS164:DS194, and the calculations in cells FL164:FL194 are analogous to those in cells DY164:DY194 Additionally, see the following page for the description of the calculations in cells FM164:FM193 and FM194.

All of these calculations are used in the Exhibits file because they are comparable to the other models, which also use five blocks.

## Individual Market Pool.xls - IMP - Global

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| FM164:FM193 | Aggregate Risk Pool Enrollment by Projection Year, Blocks 1-5 Only $\left(\mathrm{Aggl}_{\mathrm{z}(\text { pool })}\right)$ | $=\sum_{\mathrm{y}=1}^{15} \mathrm{Aggl}_{z, \mathrm{y}(\text { pool })}$ |  |
| FM194 | Aggregate Risk Pool Exposure, Blocks 1-5 Only | $=\sum_{\mathrm{z}=1}^{30} \operatorname{Aggl}_{\mathrm{z}(\text { pool })}$ |  |

## Individual Market Pool.xls - IMP-1, IMP-2, etc.

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| D4 | Initial Reference Premium (InitRefPrem) | From Global Assumptions!C24 |  |
| D5 | Initial Reference Claim Cost for Standard Lives (InitRefClaims ${ }_{\mathrm{st}}$ ) | From Global Assumptions!D49 |  |
| D6 | Initial Reference Claim Cost for Impaired Lives (InitRefClaims ${ }_{\mathrm{im}}$ ) | From Global Assumptions!D60 |  |
| D7 | Year Introduced (IntroYr) | From the appropriate cell of IMP Assumptions!D38:D47 |  |
| B12:B41 | Base Lapse Rates for Standard Lives (Baseq ${ }_{\mathrm{x}(\mathrm{st})}$ ) | From the appropriate cell of Global Assumptions!D29:D33 |  |
| C12:C41 | Base Lapse Rates for Impaired Lives <br> ( Baseq $\left._{x(i m)}\right)$ | From Global Assumptions!C54 |  |
| D12:D41 | Duration Factor ( $\mathrm{DF}_{\mathrm{x}}$ ) | From the appropriate cell of Global Assumptions!B77:B81 |  |
| E12:E41 | Per Policy Expense Rates $\left(\operatorname{Exp}_{\text {Pol( }(x)}\right)$ | From the appropriate cell of Global Assumptions!B70:B74 |  |

## Individual Market Pool.xls - IMP-1, IMP-2, etc.

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| F12:F41 | Percentage-of-Claims <br> Expense Rates <br> (Exp\%c(x)) | From the appropriate cell of Global Assumptions!C70:C74 |  |
| G12:G41 | Base Commission Rates $\left(\mathrm{Comm}_{\mathrm{B}(\mathrm{x})}\right)$ | From the appropriate cell of Global Assumptions!D70:D74 |  |
| H12:H41 | Renewal Commission Rates $\left(\operatorname{Comm}_{\mathrm{R}(\mathrm{x})}\right)$ | From the appropriate cell of Global Assumptions!E70:E74 |  |
| I12:I41 | Other Premium-Related Expense Rates (Expoth\%P(x)) | From the appropriate cell of Global Assumptions!F70:F74 |  |
| J12:J41 | Premium Age Factor $\left(\mathrm{PAF}_{\mathrm{x}}\right)$ | $\begin{array}{llr} \hline=\quad 1, & x=1 \\ & \operatorname{PAF}_{x-1} *(1+\text { PremGrowthAge }), & x=2,3,4, \ldots, 30 \end{array}$ <br> PremGrowthAge is from Global Assumptions!C25 |  |
| K12:K41 | Rate of Impairment $\left(\mu_{\mathrm{x}}\right)$ | From the appropriate cell of Global Assumptions!E43:E47 |  |
| L12:L41 | Durational Rate Increase | From the appropriate cell of IMP Assumptions!X46:X75 |  |
| O12:O41 | Reference Premium ( RefPrem $_{z}$ ) |  |  |

## Individual Market Pool.xls - IMP-1, IMP-2, etc.

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| P12:P41 | Baseline Sales (BaseSales ${ }_{z}$ ) | From the appropriate cell of IMP Assumptions!C51:L80 |  |
| Q12:Q41 | Standard Lives Reference <br> Claims <br> (RefClaims $_{z(s t)}$ ) | $\begin{array}{rlr} \hline= & \text { InitRefClaims }_{\text {st }} & \mathrm{z}=1 \\ & \text { RefClaims }_{\mathrm{z}-1(\mathrm{st},)} *\left(1+\text { ActTrend }_{\mathrm{z}-1}\right), & \mathrm{z}=2,3,4, \ldots, 30 \end{array}$ |  |
| R12:R41 | Impaired Lives Reference Claims (RefClaims $_{z(i m)}$ ) | $=\begin{array}{lr} \text { InitRefClaims }_{\text {im }}, & z=1 \\ & \text { RefClaims }_{z-1(\mathrm{im})} *\left(1+\text { ActTrend }_{z-1}\right), \end{array} \quad \mathrm{z}=2,3,4, \ldots, 30$ |  |
| S12:S41 | Actual Trend (ActTrend ${ }_{z}$ ) | From the appropriate cell of Global Assumptions!B106:B135 |  |
| T13:T41 | Implemented Rate Increase for New Business (ImpRateIncNew ${ }_{z}$ ) | $=\min \left(\text { MaxRateInc, RegDamp } * \text { ReqRateIncNew }{ }_{z}\right)$ <br> MaxRateInc is from Global Assumptions!D100 <br> RegDamp is from the appropriate cell of Global Assumptions!D90:D99, based on the value of ReqRateIncNew ${ }_{z}$ | Formula only applies to $\mathrm{z}=2,3,4, \ldots, 30$. |
| U13:U41 | Implemented Rate Increase for Renewal Business (ImpRateIncRen ${ }_{z}$ ) | $=$ ImpRateIncNew ${ }_{\text {z }}, \quad \mathrm{z}=2,3,4, \ldots, 30$ |  |

## Individual Market Pool.xls - IMP-1, IMP-2, etc.

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| V12:V41 | Market New Business Rate (MarketRate ${ }_{z}$ ) |  | This may be an error; the assessments should begin in projection year 2 rather than 3 and should be lagged only one year rather than 2. |
| W12:W41 | Company New Business Rate (ComNewBusnRate $_{2}$ ) | $$ <br> Disc@Intro is from Global Assumptions!D26 |  |
| X12:X41 | Risk Pool Premium Rate ( $\left.\mathrm{P}_{\mathrm{z}(\text { pool) })}\right)$ | $=\text { MarketRate }_{\mathrm{z}} * \text { PoolP\% }^{2}$ <br> PoolP\% is from IMP Assumptions!E15 |  |

## Individual Market Pool.xls - IMP-1, IMP-2, etc.

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| Y13:Y41 | Requested Rate Increase for New Business (ReqRateIncNew ${ }_{z}$ ) | 0, $\mathrm{z}<$ IntroYr +1  <br>    <br>  ActTrend  <br> $\mathrm{z}-1$  ,$\quad \mathrm{z}=\operatorname{IntroYr}+1$ <br> ExpectedLR $\mathrm{R}_{\mathrm{z}-2}$ is from the appropriate cell of IMP <br> Assumptions!AH46:AH75 <br> MaxLR is from IMP Assumptions!R35 | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$. |
| Y13:Y41 | Requested Rate Increase for Renewal Business (ReqRateIncRen ${ }_{z}$ ) | $=$ ReqRateIncNew $_{\text {z }}$ | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$. |

## Individual Market Pool.xls - IMP-1, IMP-2, etc.

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AC12:BF41 | New Business Sales by Cohort (NewSales ${ }_{\text {L, }}$ ) | $\begin{aligned} & \quad 0, \quad \mathrm{x} \neq 1 \\ & =\quad \begin{array}{l} \max \left(0, \text { BaseSales }_{\mathrm{z}} *\right. \\ {\left[1+\text { MktPriceSens } \text { * }\left(\text { MarketRate }_{\mathrm{z}} / \text { RefPrem }_{\mathrm{z}}-1\right)\right] *} \\ \left.\left[1+\text { ComPriceSens } \text { (ComNewBusnRate } / \text { MarketRate }_{\mathrm{z}}-1\right)\right], \\ \text { otherwise } \end{array} \\ & \text { MktPriceSens is from Global Assumptions!D14 } \\ & \text { ComPriceSens is from Global Assumptions!D15 } \end{aligned}$ |  |
| AC42:BF42 | Total New Business Sales for Issue Year y | $=\sum_{z=1}^{30} \text { NewSales }_{z, y}$ |  |

## Individual Market Pool.xls - IMP-1, IMP-2, etc.

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| BI12:CL41 | Actual Lapse Rates for Standard Lives by Cohort ( $\mathrm{q}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}$ ) | 0 , $\mathrm{x} \leq 1 \text { or BaseSales } \mathrm{y}=0$ <br> $\max \left\{\mathrm{q}_{\min (\mathrm{st}),}, \min \left[\mathrm{q}_{\max (\mathrm{st}),}\right.\right.$, Baseq $_{\mathrm{x}-1(\mathrm{st})}+\left(\left(\right.\right.$ AgeAdjPremRate $\mathrm{e}_{\mathrm{z}, \mathrm{y}}$ <br> / AgeAdjPremRate ${ }_{z-1, \mathrm{y}}$ ) - 1 - ActTrend $_{\mathrm{z}}$ ) * LapseAdjTrend $_{\text {st }}$ <br> * (((AgeAdjPremRate $\mathrm{z}_{\mathrm{z}, \mathrm{y}}$ / AgeAdjMktNewBusnRate $\left.\mathrm{z}_{\mathrm{z}, \mathrm{y}}\right)$ - 1) <br> $=\quad *$ LapseAdjMkt $\left._{s t}+1\right)-\left(\left(\left(\right.\right.\right.$ ComNewBusnRate $_{\mathrm{y}} /$ RefPrem $\left._{\mathrm{y}}\right)$ <br> $-1) *$ LapseAdjSale $\left.\left.\left._{s t}\right)\right]\right\}, \quad x=2,3$, or 4 and BaseSales $_{y} \neq 0$ <br> $\max \left\{\mathrm{q}_{\min (\mathrm{st}),}, \min \left[\mathrm{q}_{\max (\mathrm{st}),}\right.\right.$, Baseq $_{\mathrm{x}-1(\mathrm{st})}+\left(\left(\right.\right.$ AgeAdjPremRate $_{\mathrm{z}, \mathrm{y}}$ <br> / AgeAdjPremRate $\left.{ }_{z-1, \mathrm{y}}\right)-1$ - ActTrend ${ }_{\mathrm{z}}$ ) LapseAdjTrend $_{\text {st }}$ <br> * (((AgeAdjPremRate ${ }_{z, \mathrm{y}}$ / AgeAdjMktNewBusnRate $\left.{ }_{z, \mathrm{y}}\right)$ - 1) <br> * LapseAdjMkt $\left._{\text {st }}+1\right)$ ]\}, <br> $\mathrm{q}_{\min (s t)}$ is from Global Assumptions!D40 <br> $\mathrm{q}_{\max (s t)}$ is from Global Assumptions!D39 <br> AgingTrend is from Global Assumptions!C22 <br> LapseAdjTrend $_{\text {st }}$ is from Global Assumptions!D36 <br> LapseAdjMkt $_{\text {st }}$ is from Global Assumptions!D37 <br> LapseAdjSale $_{\text {st }}$ is from Global Assumptions!D38 |  |
| CO12:DR41 | Newly Impaired Lives by Cohort (NewImpLives $_{\text {z,y }}$ ) | $\begin{array}{lll} =0, & x \leq 1 \\ & 0, & x>1 \end{array}$ |  |
| CO42:DR42 | Newly Impaired Lives for Issue Year y | $=\sum_{\mathrm{z}=1}^{30} \text { NewImpLives }_{\mathrm{z}, \mathrm{y}}$ |  |

## Individual Market Pool.xls - IMP-1, IMP-2, etc.

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AC51:BF80 | Enrollment of Standard Lives by Cohort $\left(l_{z, y(s t)}\right)$ | $=\begin{array}{lll} =\text { NewSales }_{z, \mathrm{y}}, & \mathrm{x} \leq 1 \\ & \text { NewSales }_{\mathrm{z}, \mathrm{y}}+\left[\mathrm{l}_{\mathrm{z}-1, \mathrm{y}(\mathrm{st})} *\left(1-\mu_{\mathrm{x}-1}\right) *\left(1-\mathrm{q}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}\right)\right], & \mathrm{x}>1 \end{array}$ |  |
| AC81:BF81 | Total Exposure of Standard Lives by Issue Year | $=\sum_{\mathrm{z}=1}^{30} \mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}$ |  |
| BI51:CL80 | Actual Lapse Rates for Impaired Lives by Cohort ( $\mathrm{q}_{\mathrm{z}, \mathrm{y}(\mathrm{im})}$ ) |  |  |

## Individual Market Pool.xls - IMP-1, IMP-2, etc.

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| CO51:DR80 | Rate of Transfers to Risk Pool by Cohort (PoolTrans $\%_{\text {z,y }}$ ) |  |  |

## Individual Market Pool.xls - IMP-1, IMP-2, etc.

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AC89:BF118 | Enrollment of Impaired Lives by Cohort $\left(\mathrm{l}_{z, y(\text { im })}\right)$ | $\begin{array}{lr} \text { NewImpLives }_{z, y}, & \mathrm{x} \leq 1 \\ \text { NewImpLives }_{\mathrm{z}, \mathrm{y}}+\left[\left(\mathrm{l}_{\mathrm{z-1}-\mathrm{y}, \mathrm{y}(\mathrm{im})} *\left(1-\mathrm{q}_{\mathrm{z}, \mathrm{y}(\mathrm{im})}\right) *\left(1-\text { PoolTrans } \%_{z, y}\right)\right],\right. \\ x>1 \end{array}$ | Note that the first case will always produce a value of zero. |
| AC119:BF119 | Total Exposure of Impaired Lives by Issue Year | $=\sum_{z=1}^{30} l_{z, y(\text { im })}$ |  |
| BI89:CL118 | Premium Rates after Durational Adjustment but Before Age Adjustment, by Cohort (DurAdjPremRate $_{z, y}$ ) | 0, BaseSales $_{\mathrm{y}}=0$ <br> $=$ ComNewBusnRate $_{\mathrm{z}}$, <br> DurAdjPremRate $_{\mathrm{z}-1, \mathrm{y}} *\left(1+\right.$ ImpRateIncRen $\left._{\mathrm{z}}\right) *\left(1+\mathrm{DRI}_{\mathrm{x}}\right)$,  <br> otherwise  |  |
| CO89:DR118 | Premium Rates Adjusted for both Duration and Age (AgeAdjPremRate ${ }_{z, y}$ ) | $\begin{array}{llc} \hline= & \text { DurAdjPremRate }_{\mathrm{z}, \mathrm{y}}, & \mathrm{x}<1 \\ \text { DurAdjPremRate }_{\mathrm{z}, \mathrm{y}} * \text { PAF }_{\mathrm{x}}, & \mathrm{x} \geq 1 \end{array}$ |  |
| AC126:BF155 | Age-Adjusted Market-Level New Business Premium Rates by Cohort (AgeAdjMktNew BusnRate $_{z, y}$ ) | $\begin{array}{lr} \hline=, & \mathrm{x}<1 \text { or } \text { BaseSales }_{\mathrm{y}}=0 \\ \text { MarketRate }_{\mathrm{z}} * \text { PAF }_{\mathrm{x}}, & \text { otherwise } \end{array}$ |  |

## Individual Market Pool.xls - IMP-1, IMP-2, etc.

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| BI126:CL155 | Standard Lives Claim Levels by Cohort ( $\left.\mathrm{C}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}\right)$ |  |  |
| CO126:DR155 | Impaired Lives Claim Levels by Cohort ( $\mathrm{C}_{z, y(\mathrm{im})}$ ) | $=$0, BaseSales $_{y}=0$ <br> $\operatorname{RefClaims}_{z(i m)}$, BaseSales $_{y} \neq 0$ and $x=1$ <br> $C_{z-1, y(i m)} *\left(1+\right.$ ActTrend $\left._{z-1}\right) *(1+$ AgingTrend $)$, otherwise <br> AgingTrend is from Global Assumptions!C22 |  |
| AC164:BF193 | Standard Lives Expense Levels by Cohort $\left(\operatorname{Exp}_{z, y(s t)}\right)$ | Inflation is from Global Assumptions!B64 |  |

## Individual Market Pool.xls - IMP-1, IMP-2, etc.

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| BI164:CL193 | Impaired Lives Expense Levels by Cohort $\left(\operatorname{Exp}_{z, y(i m)}\right)$ | Inflation is from Global Assumptions!B64 |  |
| CO164:DR193 | Average Expense Levels by Cohort $\left(\operatorname{Exp}_{z, y}\right)$ | $\begin{aligned} & 0, \quad l_{z, y(\mathrm{st})}+\mathrm{l}_{z, y(\mathrm{im})}=0 \\ & {\left[\left(\mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \operatorname{Exp}_{z, \mathrm{y}(\mathrm{st})}\right)+\left(\mathrm{l}_{z, \mathrm{y}(\mathrm{~m})} * \operatorname{Exp}_{z, y(\mathrm{im})}\right)\right] /\left(l_{\mathrm{z}, \mathrm{y}(\mathrm{st})}+\mathrm{l}_{z, y(\mathrm{~m})}\right),} \\ & \text { otherwise } \end{aligned}$ |  |
| DU164:DU193 | Standard Lives Enrollment by Projection Year $\left(l_{\text {zst }}\right)$ | $=\sum_{\mathrm{y}=1}^{30} l_{\mathrm{z}, \mathrm{y}(\mathrm{st})}$ |  |
| DU194 | Total Standard Lives Exposure | $=\sum_{z=1}^{30} l_{z(s t)}$ | "Total" refers to the sum over all 30 projection years. |
| DV164:DV193 | Standard Lives Premium by Projection Year $\left(\mathrm{P}_{\mathrm{z}(\mathrm{st})}\right)$ | $=\sum_{\mathrm{y}=1}^{30} l_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \text { AgeAdjPremRate } \mathrm{z}_{\mathrm{z}, \mathrm{y}} * 12$ |  |

## Individual Market Pool.xls - IMP-1, IMP-2, etc.

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| DV194 | Total Standard Lives Premium $\left(\mathrm{P}_{\mathrm{st}}\right)$ | $=\sum_{z=1}^{30} \mathrm{P}_{z(\mathrm{st})}$ |  |  |
| DW164:DW193 | Standard Lives Claims by Projection Year $\left(\mathrm{C}_{\mathrm{z}(\mathrm{st})}\right)$ | $=\sum_{\mathrm{y}=1}^{30} \mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \mathrm{C}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * 12$ |  |  |
| DW194 | Total Standard Lives Claims (C $\mathrm{C}_{\mathrm{st}}$ ) | $=\sum_{z=1}^{30} C_{z(s t)}$ |  |  |
| DX164:DX193 | Standard Lives Loss Ratio by Projection Year | $\begin{array}{ll} = & 0, \\ C_{z(s t)} / P_{z(s t)}, \end{array}$ | $P_{z(s t)}=0$ <br> otherwise |  |
| DX194 | Standard Lives Loss Ratio | $\begin{array}{ll} = & 0, \\ C_{\mathrm{st}} / \mathrm{P}_{\mathrm{st}}, \end{array}$ | $\mathrm{P}_{\mathrm{st}}=0$ <br> otherwise |  |
| EA164:EA193 | Impaired Lives Enrollment by Projection Year $\left(l_{z(i m)}\right)$ | $=\sum_{\mathrm{y}=1}^{30} l_{\mathrm{z}, \mathrm{y}(\mathrm{im})}$ |  |  |
| EA194 | Total Impaired Lives Exposure | $=\sum_{\mathrm{z}=1}^{30} \mathrm{l}_{\mathrm{z}(\mathrm{~m})}$ |  |  |

## Individual Market Pool.xls - IMP-1, IMP-2, etc.

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| EB164:EB193 | Impaired Lives Premium by Projection Year $\left(\mathrm{P}_{\mathrm{z}(\mathrm{im})}\right)$ | $=\sum_{\mathrm{y}=1}^{30} \mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{im})} * \text { AgeAdjPremRate }_{\mathrm{z}, \mathrm{y}} * 12$ |  |  |
| EB194 | Total Impaired Lives Premium $\left(\mathrm{P}_{\mathrm{im}}\right)$ | $=\sum_{\mathrm{z}=1}^{30} \mathrm{P}_{\mathrm{z}(\mathrm{im})}$ |  |  |
| EC164:EC193 | Impaired Lives Claims by Projection Year ( $\mathrm{C}_{\mathrm{z} \text { (im) }}$ ) | $=\sum_{\mathrm{y}=1}^{30} \mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{im})} * \mathrm{C}_{\mathrm{z}, \mathrm{y}(\mathrm{im})} * 12$ |  |  |
| EC194 | Total Impaired Lives Claims ( $\mathrm{C}_{\mathrm{im}}$ ) | $=\sum_{z=1}^{30} C_{z(i m)}$ |  |  |
| ED165:ED193 | Impaired Lives Loss Ratio by Projection Year | $\begin{array}{ll} =\quad 0, \\ & \mathrm{C}_{\mathrm{z}(\mathrm{im})} / \mathrm{P}_{\mathrm{z}(\mathrm{im})}, \end{array}$ | $\mathrm{P}_{\mathrm{z}(\mathrm{im})}=0$ <br> otherwise | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$. |
| ED194 | Impaired Lives Loss Ratio | $\begin{aligned} &= 0, \\ & C_{i m} / P_{i m}, \end{aligned}$ | $\mathrm{P}_{\mathrm{im}}=0$ <br> otherwise |  |
| EF164:EF193 | Combined Enrollment by Projection Year $\left(l_{z}\right)$ | $=l_{z(\text { sta })}+l_{z(\text { (im) }}$ |  | "Combined" refers to the combination of standard and impaired. |

## Individual Market Pool.xls - IMP-1, IMP-2, etc.

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| EF194 | Total Combined Exposure (l) | $=\sum_{\mathrm{z}=1}^{30} \mathrm{l}_{\mathrm{z}}$ |  |
| EG164:EG193 | Combined Premium by Projection Year $\left(\mathrm{P}_{\mathrm{z}}\right)$ | $=\mathrm{P}_{\mathrm{z}(\mathrm{st})}+\mathrm{P}_{\mathrm{z} \text { (im) }}$ |  |
| EG194 | Total Combined Premium (Premium) | $=\sum_{z=1}^{30} \mathrm{P}_{\mathrm{z}}$ |  |
| EH164:EH193 | Combined Claims by Projection Year ( $\mathrm{C}_{\mathrm{z}}$ ) | $=\mathrm{C}_{\mathrm{z}(\mathrm{st})}+\mathrm{C}_{\mathrm{z} \text { (im) }}$ |  |
| EI164:EI193 | Pool Assessment by Projection Year ( $\mathrm{Assess}_{\mathrm{z}}$ ) | $=\mathrm{P}_{\mathrm{z}} * \text { AggAssess }^{2} \mathrm{~K}_{\mathrm{z}}$ <br> AggAssess $\%_{\mathrm{z}}$ is from the appropriate cell of IMP - Global!DX421:DX270 |  |
| EI194 | Total Pool Assessment | $=\sum_{z=1}^{30} \mathrm{P}_{\mathrm{z}}$ |  |
| EJ164:EJ193 | Gross Claims by Projection Year ( $\mathrm{GrossC}_{\mathrm{z}}$ ) | $=\mathrm{C}_{\mathrm{z}}+$ Assess $_{\mathrm{z}}$ |  |

## Individual Market Pool.xls - IMP-1, IMP-2, etc.

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| EJ194 | Total Gross Claims (GrossClaims) | $=\sum_{\mathrm{z}=1}^{30} \mathrm{GrossC}_{\mathrm{z}}$ |  |
| EK164:EK193 | Gross Claims PMPM by Projection Year | $\begin{array}{llr} \hline= & 0, & \mathrm{l}_{\mathrm{z}}=0 \\ & \operatorname{GrossC}_{z} / \mathrm{l}_{z} / 12, & \text { otherwise } \end{array}$ |  |
| EK194 | Gross Claims PMPM | $=$0, $\mathrm{l}_{\mathrm{z}}=0$ <br> GrossClaims / l/12, otherwise |  |
| EL164:EL193 | Combined Gross Loss Ratio by Projection Year (ActualGLR ${ }_{z}$ ) | $\begin{array}{lr} =0, & P_{z}=0 \\ \operatorname{GrossC}_{z} / P_{z}, & \text { otherwise } \end{array}$ |  |
| EL194 | Combined Gross Loss Ratio | $=$0, Premium $=0$ <br> GrossClaims $/$ Premium, otherwise |  |
| EM164:EM193 | Combined Expected Loss Ratio by Projection Year (ExpectedLR ${ }_{z}$ ) | From the appropriate cell of IMP Assumptions!AH46:AH75, based on duration | Produces \#N/A errors for projection years prior to IntroYr. |
| EN164:EN193 | Actual-to-Expected Combined Gross Loss Ratio by Projection Year | $=$0, ExpectedLR $_{\mathrm{z}}=0$ <br>  ActualGLR <br> z  ExpectedLR $_{\mathrm{Z}}, \quad$ otherwise |  |

## Individual Market Pool.xls - IMP-1, IMP-2, etc.

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| EO164:EO193 | Rolling Two-Year Combined Gross Loss Ratio by Projection Year | $=\begin{array}{lr} \begin{array}{ll} 0, & \left(\mathrm{z}=1 \text { and } \mathrm{P}_{\mathrm{z}}=0\right) \\ \mathrm{GrossC}_{\mathrm{z}} / \mathrm{P}_{\mathrm{z}}, & \text { or }\left(\mathrm{z}>1 \text { and } \mathrm{P}_{\mathrm{z}-1}+\mathrm{P}_{\mathrm{z}}=0\right) \\ \left(\operatorname{GrossC}_{\mathrm{z}-1}+\operatorname{GrossC}_{\mathrm{z}}\right) /\left(\mathrm{P}_{\mathrm{z}-1}+\mathrm{P}_{\mathrm{z}}\right), & \mathrm{z}=1 \text { and } \mathrm{P}_{\mathrm{z}} \neq 0 \\ \text { otherwise } \end{array} \end{array}$ |  |
| EP164:EP193 | Combined Premium Less Gross Claims by Projection Year (PminusC ${ }_{z}$ ) | $=\mathrm{P}_{\mathrm{z}}-\mathrm{Gross}^{\text {c }}$ |  |
| EP194 | Total Combined Premium Less Claims | = Premium - GrossClaims |  |
| EQ164:EQ193 | Combined Expenses by Projection Year $\left(\operatorname{Exp}_{z}\right)$ | $=12 * \sum_{\mathrm{y}=1}^{30}\left[\left(\mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \operatorname{Exp}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}\right)+\left(\mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{im})} * \operatorname{Exp}_{\mathrm{z}, \mathrm{y}(\mathrm{im})}\right)\right]$ |  |
| EQ194 | Total Combined Expenses (Expenses) | $=\sum_{z=1}^{30} \operatorname{Exp}_{z}$ |  |
| ER164:ER193 | Combined Expense Ratio by Projection Year | $=$0, $P_{z}=0$ <br> $\operatorname{Exp}_{z} / P_{z}$, otherwise |  |
| ER194 | Total Combined Expense Ratio | $=$0, $\mathrm{P}=0$ <br>  Expenses $/$ Premium, |  |

## Individual Market Pool.xls - IMP-1, IMP-2, etc.

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| ES164:ES193 | Combined Gain by Projection Year (Gain ${ }_{z}$ ) | $=\mathrm{P}_{\mathrm{z}}-\mathrm{GrossC}_{\mathrm{z}}-\operatorname{Exp}_{\mathrm{z}}$ |  |  |
| ES194 | Total Combined Gain (Gain) | $=\sum_{\mathrm{z}=1}^{30} \text { Gain }_{\mathrm{z}}$ |  |  |
| ET164:ET193 | Combined Gain as a <br> Percentage of Combined <br> Premium by Projection Year | $\begin{aligned} & =0, \\ & \text { Gain }_{\mathrm{z}} / \mathrm{P}_{\mathrm{z}}, \end{aligned}$ | $P_{z}=0$ <br> otherwise |  |
| ET194 | Total Combined Gain as a Percentage of Combined Premium | $\begin{aligned} &=\quad 0, \\ & \text { Gain / Premium, } \end{aligned}$ | $P=0$ <br> otherwise |  |
| EU164:EU193 | Risk-Based Capital by Projection Year $\left(\mathrm{RBC}_{\mathrm{z}}\right)$ | $=\mathrm{P}_{\mathrm{z}} * \mathrm{RBC} \%$ <br> RBC\% is from Global Assumptions!D83 |  | Uses a predefined percentage of premium as a proxy for riskbased capital requirement. |
| EV164:EV193 | Opportunity Cost of Capital by Projection Year $\left(\mathrm{OCC}_{\mathrm{z}}\right)$ | $=-\mathrm{RBC}_{\mathrm{z}} * \mathrm{OCC} \%$ <br> OCC\% is from Global Assumptions!D84 |  |  |

## Individual Market Pool.xls - IMP-1, IMP-2, etc.

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| EV194 | Total Opportunity Cost of Capital <br> (OCC) | $=\sum_{\mathrm{z}=1}^{30} \mathrm{OCC}_{\mathrm{z}}$ | This formula is currently missing from the spreadsheet. |
| EW164:EW193 | Economic Gain by Projection Year (EconGain ${ }_{z}$ ) | $=\mathrm{Gain}_{\mathrm{z}}+\mathrm{OCC}_{\mathrm{z}}$ |  |
| EW194 | Total Economic Gain | $=$ Gain + OCC |  |
| EG197 | Present Value of Combined Premium (PVPremium) | $=\mathrm{NPV}_{\text {int }}\left(\mathrm{P}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ | All present values in this section are taken over all 30 projection years, and int is from Global Assumptions!B63. |
| EI197 | Present Value of Pool Assessments (PVAssess) | $=\mathrm{NPV}_{\text {int }}\left(\right.$ Assess $\left._{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| EJ197 | Present Value of Gross Claims <br> (PVGrossClaims) | $=\mathrm{NPV}_{\text {int }}\left(\mathrm{GrossC}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| EP197 | Present Value of Combined Premium Less Gross Claims (PVPminusGrossC) | $=\mathrm{NPV}_{\text {int }}\left(\right.$ PminusGrossC $\left.\mathrm{Z}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |

## Individual Market Pool.xls - IMP-1, IMP-2, etc.

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| EQ197 | Present Value of Combined <br> Expenses <br> (PVExpenses) | $=\mathrm{NPV}_{\mathrm{int}}\left(\mathrm{Exp}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| ES197 | Present Value of Combined <br> Gain <br> (PVGain) | $=\mathrm{NPV}_{\mathrm{int}}\left(\mathrm{Gain}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| EV197 | Present Value of <br> Opportunity Cost of Capital <br> (PVOCC) | $=\mathrm{NPV}_{\mathrm{int}}\left(\mathrm{OCC}_{z}\right) * \sqrt{1+\mathrm{int}}$ |  |
| EW197 | Present Value of Economic <br> Gain <br> (PVEconGain) | $=\mathrm{NPV}_{\text {int }}\left(\right.$ EconGain $\left._{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| EG198 | Present Value of Combined <br> Premium as a Percentage of <br> Present Value of Combined <br> Premium | $=\mathrm{PVPremium} \mathrm{/} \mathrm{PVPremium}$ | Identically equal to |

## Individual Market Pool.xls - IMP-1, IMP-2, etc.

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| EJ198 | Present Value of Gross <br> Claims as a Percentage of <br> Present Value of Combined <br> Premium | $=$ PVGrossClaims / PVPremium |  |
| EP198 | Present Value of Combined <br> Premium Less Gross Claims <br> as a Percentage of Present <br> Value of Combined <br> Premium | $=$ PVPminusGrossC / PVPremium |  |
| EQ198 | Present Value of Combined <br> Expenses as a Percentage of <br> Present Value of Combined <br> Premium | $=$ PVExpenses / PVPremium |  |
| ES198 | Present Value of Combined <br> Gain as a Percentage of <br> Present Value of Combined <br> Premium | $=$ PVGain / PVPremium |  |
| EV198 | Present Value of <br> Opportunity Cost of Capital <br> as a Percentage of Present <br> Value of Combined <br> Premium | $=$ PVOCC / PVPremium |  |

## Individual Market Pool.xls - IMP-1, IMP-2, etc.

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| EW198 | Present Value of Economic <br> Gain as a Percentage of <br> Present Value of Combined <br> Premium | $=$ PVEconGain / PVPremium |  |

## Interblock Subsidy.xls - Global Assumptions

The Global Assumptions tab within the Interblock Subsidy spreadsheet is nearly identical to the analogous tab in the Global spreadsheet. The field names, cell numbers, and values are identical, except that TrendScen is at cell G102 rather than cell C102. If a change is made in the Global Assumptions tab of the Global spreadsheet, the Global Assumptions tabs of all other spreadsheets in the model will be updated automatically the next time they are opened.

## Interblock Subsidy.xls - Current Market Assump 5 blocks

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| E3 | Year at which Pooling Begins <br> (PoolingYr) | $=31$ |  | Hardcoded value; value of 31 indicates no pooling. |
| D11:D15 | Year of Introduction by Block <br> (Intro $\mathrm{Yr}_{\mathrm{b}}$ ) | $\begin{aligned} & 1, \\ & 4, \\ & 7, \\ & 10, \\ & 13, \end{aligned}$ | $\begin{aligned} & \mathrm{b}=1 \\ & \mathrm{~b}=2 \\ & \mathrm{~b}=3 \\ & \mathrm{~b}=4 \\ & \mathrm{~b}=5 \end{aligned}$ | Hardcoded values |
| L4 | Target Lifetime Loss Ratio (TargetLR) | = 65.00\% |  | Hardcoded value |
| M5 | Maximum Allowable Loss Ratio <br> (MaxLR) | = 200.0\% |  | Hardcoded value |
| L7 | Flag to Include Trend (TrendFlag) | $=1$ |  | Hardcoded value; value of 1 means to include trend in projections, value of 0 means to exclude trend. |
| L11 | Initial Reference Claim Cost for Standard Lives (InitRefClaims ${ }_{\mathrm{st}}$ ) | From Global Assumptions!D49 |  | Best estimate of starting claim costs for standard lives |

## Interblock Subsidy.xls - Current Market Assump 5 blocks

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| N11 | Pricing Assumption of Initial Reference Claim Cost for Standard Lives (InitRefClaims ${ }_{\text {st(pr) }}$ ) | = InitRefClaims ${ }_{\text {st }}$ | Standard lives starting claim costs used in initial pricing; the model provides the flexibility to adjust the baseline claims for use in pricing, but the model currently does not make any such adjustment. |
| L12 | Initial Reference Claim Cost for Impaired Lives (InitRefClaims ${ }_{\text {im }}$ ) | From Global Assumptions!D60 | Best estimate of starting claim costs for impaired lives |
| N12 | Pricing Assumption of Initial Reference Claim Cost for Impaired Lives (InitRefClaims ${ }_{\mathrm{im}(\mathrm{pr})}$ ) | $=$ InitRefClaims $_{\text {im }}$ | Impaired lives starting claim costs used in initial pricing; the model provides the flexibility to adjust the baseline claims for use in pricing, but the model currently does not make any such adjustment. |

## Interblock Subsidy.xls - Current Market Assump 5 blocks

| Cells | Description | Formula |  |  | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| M14 | Durational Deterioration Limitation Period (DDLP) | = 5 |  |  | Hardcoded value; period during which the probability of a standard life becoming impaired is assumed to be greater than zero for pricing purposes |
| M15 | Expected Premium Rate (ExpPrem) | = \$126 |  |  | Hardcoded value; this represents the company's targeted new business rate |
| $\begin{aligned} & \text { O4, Q4, S4, U4, } \\ & \text { W4 } \end{aligned}$ | Standard Lives Morbidity <br> Adjustment Factors by Block <br> (MorbAdjb ${ }_{\text {(stt) }}$ ) | $=1.00$, |  | $\mathrm{b}=1,2,3,4,5$ | Hardcoded values |
| $\begin{aligned} & \text { P4, R4, T4, V4, } \\ & \text { X4 } \end{aligned}$ | Impaired Lives Morbidity Adjustment Factors by Block (MorbAdjb ${ }_{\text {(im) }}$ ) | $=1.00$, |  | $\mathrm{b}=1,2,3,4,5$ | Hardcoded values |
| R6:R10 | Durational Rate Increase ( $\mathrm{DRI}_{\mathrm{x}}$ ) | Renewal 1 ( $x=2$ ): <br> Renewal 2 ( $\mathrm{x}=3$ ): <br> Renewal 3 ( $x=4$ ): <br> Renewal 4 ( $x=5$ ): <br> Renewals 5-29 ( $\mathrm{x}=6,7,8, \ldots, 30$ ) | $\begin{aligned} & 5 \% \\ & 5 \% \\ & 5 \% \\ & 5 \% \\ & 0 \% \end{aligned}$ |  | Hardcoded values; represents the additional rate increase needed each year due to anticipated wearoff of underwriting |

## Interblock Subsidy.xls - Current Market Assump 5 blocks

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| B19:B48 | Global Baseline Sales by Duration (GlobalBaseSales ${ }_{x}$ ) | From the appropriate cell of Global Assumptions!O15:O44 |  |
| C19:G48 | Baseline Sales by Projection Year by Block <br> (BaseSales ${ }_{\text {z,b }}$ ) | From the appropriate cell of Global Assumptions!P15:T44 |  |
| J19:J48 | Standard Lives Base Lapse Rates Used in Pricing $\left(\mathrm{q}_{\mathrm{x}(\mathrm{st}, \mathrm{pr})}\right)$ | $=\max \left\{\mathrm{q}_{\min (\mathrm{st}),}, \min \left[\mathrm{q}_{\max (\mathrm{st})}, \operatorname{Baseq}_{\mathrm{x}(\mathrm{st})}+\left(\left(\left(\mathrm{PAF}_{\mathrm{x}+1} /\right.\right.\right.\right.\right.$ PAF $_{\mathrm{x}} *$ AccumDRI $_{\mathrm{x}+1}$ <br> $/$ AccumDRI $\left.\left._{\mathrm{x}}\right)-1\right) *$ LapseAdjTrend $\left._{\mathrm{st}}\right)+\left(\left(\right.\right.$ AccumDRI $\left._{\mathrm{x}+1}-1\right)$ * <br> LapseAdjMkt ${ }_{\mathrm{st}}$ ]\} <br> $\mathrm{q}_{\text {min(st) }}$ is from Global Assumptions!D40 <br> $\mathrm{q}_{\max (s t)}$ is from Global Assumptions!D39 <br> Baseq $_{\mathrm{x}(\mathrm{st}, \mathrm{pr})}$ is from the appropriate cell of Global Assumptions!E29:E33 <br> LapseAdjTrend $_{\text {st }}$ is from Global Assumptions!D36 <br> LapseAdjMkt ${ }_{\text {st }}$ is from Global Assumptions!D37 | Baseline standard lives lapse rates adjusted to reflect higher anticipated lapses due to rate increases exceeding claim trend and renewal rates exceeding the market new business rate |

## Interblock Subsidy.xls - Current Market Assump 5 blocks

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| K19:K48 | Impaired Lives Base Lapse Rates Used in Pricing $\left(\mathrm{q}_{\mathrm{x}(\mathrm{im}, \mathrm{pr})}\right)$ | $\mathrm{q}_{\text {min(im) }}$ is from Global Assumptions!D58 <br> $\mathrm{q}_{\max (\mathrm{im})}$ is from Global Assumptions!D57 <br> Baseq $_{\mathrm{im}(\mathrm{pr})}$ is from Global Assumptions!D54 <br> LapseAdjTrend ${ }_{i m}$ is from Global Assumptions!D56 |  | Baseline impaired lives lapse rates adjusted to reflect higher anticipated lapses due to rate increases exceeding claim trend during durational deterioration limitation period; beyond DDLP, impaired lives lapse rates are equal to standard lives lapse rates. |
| L19:L48 | Probability of Becoming Impaired Used in Pricing ( $\mu_{\mathrm{x}(\mathrm{pr})}$ ) | $\begin{array}{r} =\quad \mu_{\mathrm{x}}, \\ 0, \end{array}$ <br> $\mu_{\mathrm{x}}$ is from the appropriate cell of Global Assumption | $\begin{aligned} & x \leq \text { DDLP } \\ x & >\text { DDLP } \\ & \end{aligned}$ |  |
| M19:M48 | Number of Standard Lives $\left(\mathrm{l}_{\mathrm{x}(\mathrm{st})}\right)$ | $\begin{array}{ll} = & 1, \\ & \mathrm{l}_{\mathrm{x}-1(\mathrm{st})} *\left(1-\mu_{\mathrm{x}-1(\mathrm{pr})}\right) *\left(1-\mathrm{q}_{\mathrm{x}-1(\mathrm{st}, \mathrm{pr})}\right), \end{array}$ | $\begin{array}{r} x=1 \\ x=2,3,4, \ldots, 30 \end{array}$ | The values in columns M , N , and O represent proportions of the number of first-year standard lives. |
| N19:N48 | Number of Impaired Lives $\left(l_{x(i m)}\right)$ | $=\quad \begin{aligned} & =, \\ & {\left[\mathrm{l}_{\mathrm{x}-1(\mathrm{im})} *\left(1-\mathrm{q}_{\mathrm{x}-1(\mathrm{im}, \mathrm{pr})}\right)\right]+\left[\mathrm{l}_{\mathrm{x}-1(\mathrm{st})} * \mu_{\mathrm{x}-1(\mathrm{pr})}\right]} \end{aligned}$ | $\begin{array}{r} x=1 \\ x=2,3,4, \ldots, 30 \end{array}$ |  |

## Interblock Subsidy.xls - Current Market Assump 5 blocks

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| O19:048 | Number of Total Lives $\left(l_{x}\right)$ | $=l_{\text {x(st) }}+l_{\text {x(im) }}$ |  |  |
| P19:P48 | Accumulated Trend (AccumTrend ${ }_{x}$ ) | $\begin{aligned} = & 1, \\ & \text { AccumTrend }_{\mathrm{x}-1} *[1+(\text { Trend } * \text { TrendFlag })], \end{aligned}$ <br> Trend is from Global Assumptions!D21 | $\begin{array}{r} x=1 \\ x=2,3,4, \ldots, 30 \end{array}$ |  |
| Q19:Q48 | Discount Factor $\left(v_{x}\right)$ | $\begin{array}{ll} = & 1, \\ & v_{\mathrm{x}-1} /(1+\mathrm{int}), \end{array}$ | $\begin{array}{r} x=1 \\ x=2,3,4, \ldots, 30 \end{array}$ |  |
| R19:R49 | Premium Age Factor (PAF) | $\begin{array}{ll} =\quad 1, \\ \quad \operatorname{PAF}_{\mathrm{x}-1} *(1+\text { PremGrowthAge }) \end{array}$ <br> PremGrowthAge is from Global Assumptions!C25 | $\begin{array}{r} x=1 \\ x=2,3,4, \ldots, 30 \end{array}$ | A $31^{\text {st }}$-year value is needed for the calculation of $\mathrm{q}_{30(\mathrm{st}, \mathrm{pr})}$. |

## Interblock Subsidy.xls - Current Market Assump 5 blocks

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| S19:S48 | Pricing Claims $\left(\mathrm{C}_{\mathrm{x}(\mathrm{pr})}\right)$ | InitRefPrem is from Global Assumptions!C24 <br> MorbAdj ${ }_{s t}$ is from Global Assumptions!D51 <br> $\mathrm{DF}_{\mathrm{x}}$ is from the appropriate cell of Current Market Summary 5 blocks!D12:D41 | Standard lives’ claims are adjusted each year for morbidity, duration (within the DDLP), aging, and trend. <br> Impaired lives’ claims are adjusted each year for aging and trend. |
| T19:T48 | Annual Durational Rate Increase $\left(\mathrm{ADRI}_{\mathrm{x}}\right)$ | $\begin{array}{lr} =0, & x=1 \\ \text { DRI }_{x}, & x=2,3,4, \ldots, 30 \end{array}$ |  |
| U19:U49 | Accumulated Durational Rate Increase Factor (AccumDRIx) | $\begin{array}{lr} \hline=\quad \begin{aligned} 1, & x=1 \\ & \text { AccumDRI }_{x-1} *\left(1+\text { ADRI }_{x}\right), \end{aligned} \quad x=2,3,4, \ldots, 31 \end{array}$ | A $31^{\text {st }}$-year value is needed for the calculation of $\mathrm{q}_{30(\mathrm{st}, \mathrm{pr})}$. |

## Interblock Subsidy.xls - Current Market Assump 5 blocks

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| V19:V48 | Pricing Premium $\left(\mathrm{P}_{\mathrm{x}(\mathrm{pr})}\right)$ | $\begin{aligned} & \mathrm{l}_{1} * \sum_{\mathrm{i}=1}^{30}\left(\mathrm{C}_{\mathrm{i}(\mathrm{pr})} * \mathrm{v}_{\mathrm{i}}\right) / \sum_{\mathrm{j}=1}^{30}\left(\mathrm{l}_{\mathrm{j}} * \mathrm{PAF}_{\mathrm{j}} * \text { AccumTrend }_{\mathrm{j}} * \mathrm{v}_{\mathrm{j}} * \text { AccumDRI }_{\mathrm{j}}\right) \\ &=\quad / \text { TargetLR }, \\ & \mathrm{x}=1 \\ & \mathrm{P}_{1(\mathrm{pr})} / \mathrm{l}_{1} * \mathrm{PAF}_{\mathrm{x}} * \mathrm{l}_{\mathrm{x}} * \text { AccumTrend }_{\mathrm{x}} * \text { ADRI }_{\mathrm{x}} / \mathrm{ADRI}_{1}, \\ & \mathrm{x}=2,3,4, \ldots, 30 \end{aligned}$ <br> PAF $_{\mathrm{x}}$ is from Current Market Summary 5 blocks!J12:J41 |  |
| W19:W48 | Pricing Loss Ratio $\left(\mathrm{LR}_{\mathrm{x}(\mathrm{pr})}\right)$ | $=\mathrm{C}_{\mathrm{x}(\mathrm{pr})} / \mathrm{P}_{\mathrm{x}(\mathrm{pr})}$ |  |

## Interblock Subsidy.xls - Current Market Assump 5 blocks

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| X19:X48 | Pricing Expenses $\left(\operatorname{Exp}_{x(p r)}\right)$ | $\begin{aligned} =\mathrm{l}_{\mathrm{x}} * & \operatorname{Exppol}(\mathrm{x}) *\left(1+{\text { Inflation })^{\mathrm{x}-1}}\right. \\ & +\operatorname{Exp}_{\% \mathrm{C}(\mathrm{x})} * \mathrm{C}_{\mathrm{x}(\mathrm{pr})} \\ & +\operatorname{Comm}_{\mathrm{B}(\mathrm{x})} * \mathrm{P}_{1(\mathrm{pr})} / \mathrm{l}_{1} * \mathrm{l}_{\mathrm{x}} \\ & +\operatorname{Comm}_{\mathrm{R}(\mathrm{x})} *\left[\mathrm{P}_{\mathrm{x}(\mathrm{pr})}-\left(\mathrm{P}_{1(\mathrm{pr})} / \mathrm{l}_{1} * \mathrm{l}_{\mathrm{x}}\right)\right] \\ & +\operatorname{Expoth} \% \mathrm{P}(\mathrm{x}) * \mathrm{P}_{\mathrm{x}(\mathrm{pr})} \end{aligned}$ <br> $\operatorname{Exp}_{\text {Pol(x) }}$ is from the appropriate cell of Current Market Summary 5 blocks!E12:E41 <br> Inflation is from Global Assumptions!B64 <br> $\operatorname{Exp}_{\% \mathrm{C}(\mathrm{x})}$ is from the appropriate cell of Current Market Summary 5 blocks!F12:F41 <br> Comm $_{B(x)}$ is from the appropriate cell of Current Market Summary 5 blocks!G12:G41 <br> Comm $_{R(x)}$ is from the appropriate cell of Current Market Summary 5 blocks!H12:H41 <br> Expoth\%P(x) is from the appropriate cell of Current Market Summary 5 blocks!I12:I41 |  |
| Y19:Y48 | Pricing Expense as a Percentage of Pricing Premium | $=\operatorname{Exp}_{\mathrm{x}(\mathrm{pr})} / \mathrm{P}_{\mathrm{x}(\mathrm{pr})}$ |  |
| Z19:Z48 | Pricing Operating Gain $\left(\right.$ Gain $\left._{\text {(pr) }}\right)$ | $=\mathrm{P}_{\mathrm{x}(\mathrm{pr})}-\mathrm{C}_{\mathrm{x}(\mathrm{pr})}-\operatorname{Exp}_{\mathrm{x}(\mathrm{pr})}$ |  |

## Interblock Subsidy.xls - Current Market Assump 5 blocks

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AA19:AA48 | Pricing Gain as a Percentage of Pricing Premium | $=\mathrm{Gain}_{\mathrm{x}(\mathrm{pr})} / \mathrm{P}_{\mathrm{x}(\mathrm{pr})}$ |  |
| S50 | Simple Sum of Pricing Claims (SumClaims) | $=\sum_{\mathrm{x}=1}^{30} \mathrm{C}_{\mathrm{x}(\mathrm{pr})}$ |  |
| V50 | Simple Sum of Pricing Premiums (SumPrem) | $=\sum_{x=1}^{30} \mathrm{P}_{\mathrm{x}(\mathrm{pr})}$ |  |
| W50 | Pricing Loss Ratio, Using Simple Sums | = SumClaims / SumPrem |  |
| X50 | Simple Sum of Pricing Expenses (SumExp) | $=\sum_{\mathrm{x}=1}^{30} \operatorname{Exp}_{\mathrm{x}(\mathrm{pr})}$ |  |
| Y50 | Pricing Expense Ratio, Using Simple Sums | = SumExp / SumPrem |  |
| Z50 | Simple Sum of Pricing Gains (SumGain) | $=\sum_{x=1}^{30} \operatorname{Gain}_{\mathrm{x}(\mathrm{pr})}$ |  |

## Interblock Subsidy.xls - Current Market Assump 5 blocks

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AA50 | Pricing Gain Ratio, Using Simple Sums | = SumGain / SumPrem |  |
| S51 | Present Value of Pricing Claims over 10 Years (PVClaims ${ }_{10}$ ) | $=\mathrm{NPV}_{\text {int }}\left(\mathrm{C}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}, \quad$ where NPV is taken over $\mathrm{x}=1,2,3, \ldots .10$ |  |
| V51 | Present Value of Pricing Premiums over 10 Years (PVPrem ${ }_{10}$ ) | $=\mathrm{NPV}_{\text {int }}\left(\mathrm{P}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}, \quad$ where NPV is taken over $\mathrm{x}=1,2,3, \ldots .10$ |  |
| W51 | Pricing Loss Ratio, Using 10-Year NPVs | $=$ PVClaims $_{10} /$ PVPrem $_{10}$ |  |
| X51 | Present Value of Pricing Expenses over 10 Years ( PVExp $_{10}$ ) | $=N P V_{\text {int }}\left(\operatorname{Exp}_{x(\text { (rr) }}\right) * \sqrt{1+\mathrm{int}}$, where NPV is taken over $\mathrm{x}=1,2,3, \ldots .10$ |  |
| Y51 | Pricing Expense Ratio, Using 10-Year NPVs | $=$ PVExp $_{10} /$ PVPrem $_{10}$ |  |
| Z51 | Present Value of Pricing Gains over 10 Years (PVGain ${ }_{10}$ ) | $=\operatorname{NPV}_{\mathrm{int}}\left(\operatorname{Gain}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}$ <br> where NPV is taken over $\mathrm{x}=1,2,3, \ldots .10$ |  |
| AA51 | Pricing Gain Ratio, Using 10-Year NPVs | $=$ PVGain $_{10} /$ PVPrem $_{10}$ |  |

## Interblock Subsidy.xls - Current Market Assump 5 blocks

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| S52 | Present Value of Pricing Claims over 30 Years (PVClaims ${ }_{30}$ ) | $=\operatorname{NPV}_{\text {int }}\left(\mathrm{C}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}, \quad$ where NPV is taken over $\mathrm{x}=1,2,3, \ldots .30$ |  |
| V52 | Present Value of Pricing Premiums over 30 Years ( PVPrem $_{30}$ ) | $=\mathrm{NPV}_{\text {int }}\left(\mathrm{P}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}, \quad$ where NPV is taken over $\mathrm{x}=1,2,3, \ldots .30$ |  |
| W52 | Pricing Loss Ratio, Using 30-Year NPVs | $=$ PVClaims $_{30} /$ PVPrem $_{30}$ |  |
| X52 | Present Value of Pricing Expenses over 30 Years (PVExp $_{30}$ ) | $=N P V_{\text {int }}\left(\operatorname{Exp}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}$, where NPV is taken over $\mathrm{x}=1,2,3, \ldots .30$ |  |
| Y52 | Pricing Expense Ratio, Using 30-Year NPVs | $=$ PVExp $_{30} /$ PVPrem $_{30}$ |  |
| Z52 | Present Value of Gains over 30 Years <br> $\left(\right.$ PVGain $\left._{30}\right)$ | $=\operatorname{NPV}_{\mathrm{int}}\left(\operatorname{Gain}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}$ <br> where NPV is taken over $x=1,2,3, \ldots .30$ |  |
| AA52 | Pricing Gain Ratio, Using 30-Year NPVs | $=$ PVGain $_{30} /$ PVPrem $_{30}$ |  |

## Interblock Subsidy.xls - Current Market Assump 5 blocks

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| S53 | PV of Pricing Claims as a Percentage of PV of Pricing Premium | $=$ PVClaims $_{30} /$ PVPrem $_{30}$ | Model calculations produce a stream of premiums such that this is equal to the target lifetime loss ratio. |
| V53 | PV of Pricing Premium as a Percentage of PV of Pricing Premium | $=$ PVPrem $_{30} /$ PVPrem $_{30}$ | Identically equal to 1.000 . |
| X53 | PV of Pricing Expenses as a Percentage of PV of Pricing Premium | $=$ PVExp $_{30} /$ PVPrem $_{30}$ |  |
| Z53 | PV of Pricing Gain as a Percentage of PV of Pricing Premium | $=$ PVGain $_{30} /$ PVPrem $_{30}$ |  |
| O54 | Interest <br> (int) | From Global Assumptions!B63 |  |
| AC19:AC48 | Expected Loss Ratio by Projection Year (ExpectedLR ${ }_{z}$ ) | See formula for cells AE51:BH51, below. |  |

## Interblock Subsidy.xls - Current Market Assump 5 blocks

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AE19:BH48 | Expected Premium Inforce at Age Adjusted Market New Business Rates, by Cohort <br> (ExpInforce $_{z, \mathrm{x}}$ ) | $=\quad \begin{aligned} & 0, \quad y<1 \text { or } \mathrm{y}>20 \\ & \text { AggAgeAdjMktNewBusnRate }_{\mathrm{z}, \mathrm{y}} *\left(\operatorname{Aggl}_{z, \mathrm{y}(\mathrm{st})}+\operatorname{Aggl}_{z, y(\mathrm{im})}\right), \end{aligned}$ <br> otherwise <br> AggAgeAdjMktNewBusnRate ${ }_{z, y}$ is from the appropriate cell of Current Market Summary 5 blocks!BT89:CM118 <br> $\mathrm{Aggl}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}$ is from the appropriate cell of Current Market Summary 5 blocks!AB51:AU80 <br> $\operatorname{Aggl}_{z, y(i m)}$ is from the appropriate cell of Current Market Summary 5 blocks!AB89:AU80 | Note that in this table, columns represent projection years, rows represent durations, and diagonals represent issue years. |
| AE51:BH51 | Composite Expected Loss Ratio by Projection Year | $=\begin{array}{ll} 0, & \sum_{\mathrm{x}=1}^{30} \mathrm{P}_{\mathrm{z}, \mathrm{x}}=0 \\ & \left(\sum_{\mathrm{i}=1}^{30} \text { ExpInforce }_{\mathrm{z}, \mathrm{i}} * \mathrm{LR}_{\mathrm{i}}\right) / \sum_{\mathrm{j}=1}^{30} \text { ExpInforce }_{\mathrm{z}, \mathrm{j},} \end{array}$ | Summations are over all positive durations for a given projection year. |
| AE52:BH52 | Total Expected Premium Inforce by Projection Year, for Block 1 | $=\sum_{x=1}^{30} \text { ExpInforce }_{z, x, 1}$ |  |

## Interblock Subsidy.xls - Current Market Summary 5 blocks

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| D4 | Reference Premium (InitRefPrem) | From Global Assumptions!C24 |  |
| D5 | Initial Reference Claim Cost for Standard Lives (InitRefClaims ${ }_{\text {st }}$ ) | From Global Assumptions!D49 |  |
| D6 | Initial Reference Claim Cost for Impaired Lives (InitRefClaims ${ }_{\text {im }}$ ) | From Global Assumptions!D60 |  |
| B12:B41 | Base Lapse Rates for Standard Lives (Baseq $_{\mathrm{x}(\mathrm{st})}$ ) | From the appropriate cell of Global Assumptions!D29:D33 |  |
| C12:C41 | Base Lapse Rates for Impaired Lives ( Baseq $_{x(i m)}$ ) | From Global Assumptions!C54 |  |
| D12:D41 | Duration Factor ( $\mathrm{DF}_{\mathrm{x}}$ ) | From the appropriate cell of Global Assumptions!B77:B81 |  |
| E12:E41 | Per Policy Expense Rates (Exppol(x)) | From the appropriate cell of Global Assumptions!B70:B74 |  |

## Interblock Subsidy.xls - Current Market Summary 5 blocks

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| F12:F41 | Percentage-of-Claims Expense Rates (Exp\%C(x)) | From the appropriate cell of Global Assumptions!C70:C74 |  |
| G12:G41 | Base Commission Rates $\left(\mathrm{Comm}_{\mathrm{B}(\mathrm{x})}\right)$ | From the appropriate cell of Global Assumptions!D70:D74 |  |
| H12:H41 | Renewal Commission Rates $\left(\operatorname{Comm}_{R(x)}\right)$ | From the appropriate cell of Global Assumptions!E70:E74 |  |
| I12:I41 | Other Premium-Related Expense Rates (Expoth\%p(x)) | From the appropriate cell of Global Assumptions!F70:F74 |  |
| J12:J41 | Premium Age Factor $\left(\mathrm{PAF}_{\mathrm{x}}\right)$ | $\begin{array}{llr} \hline= & 1, & x=1 \\ & \operatorname{PAF}_{x-1} *(1+\text { PremGrowthAge }), & x=2,3,4, \ldots, 30 \end{array}$ <br> PremGrowthAge is from Global Assumptions!C25 |  |
| K12:K41 | Rate of Impairment $\left(\mu_{\mathrm{x}}\right)$ | From the appropriate cell of Global Assumptions!E43:E47 |  |
| L12:L41 | Durational Rate Increase | From the appropriate cell of Current Market Assump 5 blocks!T19:T48 |  |
| O12:041 | Reference Premium ( RefPrem $_{z}$ ) |  |  |

## Interblock Subsidy.xls - Current Market Summary 5 blocks

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| P12:P41 | Baseline Sales (BaseSales ${ }_{z}$ ) | From the appropriate cell of Current Market Assump 5 blocks!B19:B48 |  |
| Q12:Q41 | Standard Lives Reference Claims (RefClaims $_{z(\mathrm{st})}$ ) | $\begin{array}{llr} \hline= & \text { InitRefClaims }_{\text {st }} & z=1 \\ & \text { RefClaims }_{z-1(\mathrm{st})} *\left(1+\text { ActTrend }_{z-1}\right), & \mathrm{z}=2,3,4, \ldots, 30 \end{array}$ |  |
| R12:R41 | Impaired Lives Reference Claims <br> (RefClaims ${ }_{z(\mathrm{im})}$ ) | $=\begin{array}{ll} \hline \text { InitRefClaims }_{\mathrm{im}}, & \mathrm{z}=1 \\ & \text { RefClaims }_{\mathrm{z}-1(\mathrm{im})} *\left(1+\text { ActTrend }_{\mathrm{z}-1}\right), \end{array} \quad \mathrm{z}=2,3,4, \ldots, 30$ |  |
| S12:S41 | Actual Trend (ActTrend ${ }_{z}$ ) | From the appropriate cell of Global Assumptions!B106:B135 |  |
| T13:T41 | Implemented Rate Increase for New Business (ImpRateIncNew ${ }_{z}$ ) | $=\min \left(\text { MaxRateInc, RegDamp } * \text { ReqRateIncNew }{ }_{z}\right)$ <br> MaxRateInc is from Global Assumptions!D100 <br> RegDamp is from the appropriate cell of Global Assumptions!D90:D99, based on the value of ReqRateIncNew ${ }_{z}$ | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$. |
| U13:U41 | Implemented Rate Increase for Renewal Business (ImpRateIncRen ${ }_{z}$ ) | $=$ ImpRateIncNew ${ }_{\text {z }}$ | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$. |

## Interblock Subsidy.xls - Current Market Summary 5 blocks

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| V12:V41 | Market New Business Rate (MarketRate ${ }_{z}$ ) | $\begin{array}{rlr} = & \mathrm{P}_{1(\mathrm{pr})}, & \mathrm{z}=1 \\ & \text { MarketRate }_{\mathrm{z}-1} *\left(1+\text { ActTrend }_{z-1}\right), & \mathrm{z}=2,3,4, \ldots, 30 \end{array}$ <br> $\mathrm{P}_{1(\mathrm{pr})}$ is from Current Market Assump 5 blocks!V19 |  |
| W12:W41 | Global Company New Business Rate (GlobalComNewBusnRate ${ }_{z}$ ) | $=\sum_{\mathrm{b}=1}^{5} \text { ComNewBusnRate }_{\mathrm{z}, \mathrm{~b}}$ <br> ComNewBusnRate ${ }_{z, \mathrm{~b}}$ are from the appropriate cell from W12:W41 in CM-1, CM-2, CM-3, CM-4, and CM-5, respectively. | The formula in the spreadsheet appears to be in error. |
| X13:X41 | Global Requested Rate Increase for New Business (GlobalReqRateIncNew ${ }_{z}$ ) | ExpectedLR ${ }_{z-2}$ is from the appropriate cell of Current Market Assump 5 blocks!AC19:AC48 <br> MaxLR is from Current Market Assump 5 blocks!M5 | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$. |
| Y13:Y41 | Requested Rate Increase for Renewal Business (GlobalReqRateIncRen ${ }_{z}$ ) | $=$ GlobalReqRateIncNew $_{\text {z }}$ | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$. |

## Interblock Subsidy.xls - Current Market Summary 5 blocks

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| Z8 | Year of Introduction (IntroYr) | $=\min \left(\text { Intro } \mathrm{Yr}_{\mathrm{b}}\right),$ $b=1,2,3,4,5$ <br> Intro $\mathrm{Yr}_{\mathrm{b}}$ is from the appropriate cell of Current Market Assump 5 blocks!D11:D15 |  |
| AB12:AU41 | Aggregate New Business Sales by Cohort (AggSales ${ }_{z, \mathrm{y}}$ ) | $=\sum_{b=1}^{5} \text { Sales }_{z, \mathrm{y}, \mathrm{~b}}$ | In this and subsequent formulas in this tab, the values being aggregated are from CM-1, CM-2, CM-3, CM-4, and CM-5. |
| AB42:AU42 | Aggregate New Business Sales for Issue Year y | $=\sum_{\mathrm{z}=1}^{30} \text { AggSales }_{\mathrm{z}, \mathrm{y}}$ |  |
| AX12:BQ41 | Aggregate Actual Lapse Rates for Standard Lives by Cohort $\left(\mathrm{Aggq}_{z, \mathrm{y}(\mathrm{st})}\right)$ | $\begin{array}{lr} 0, & x \leq 1 \text { or } \operatorname{Aggl}_{z-1, y(s t)}=0 \\ = & \\ \sum_{i=1}^{5}\left(l_{z-1, y, i(s t)} * q_{z, y, j(s t)}\right) / \sum_{j=1}^{5} l_{z-1, y, j(s t)}, & \text { otherwise } \end{array}$ |  |
| BT12:CM41 | Aggregate Newly Impaired Lives by Cohort (AggNewImpLives $_{z, y}$ ) | $=\sum_{b=1}^{5} \text { NewImpLives }_{z, \mathrm{y}, \mathrm{~b}}$ |  |

## Interblock Subsidy.xls - Current Market Summary 5 blocks

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| BT42:CM42 | Aggregate Newly Impaired Lives for Issue Year y | $=\sum_{\mathrm{z}=1}^{30} \text { AggNewImpLives }_{\mathrm{z}, \mathrm{y}}$ |  |
| AB51:AU80 | Aggregate Enrollment of Standard Lives by Cohort $\left(\mathrm{Aggl}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}\right)$ | $=\sum_{b=1}^{5} l_{2, \mathrm{y}, \mathrm{~b}(\mathrm{st})}$ |  |
| AB81:AU81 | Aggregate Enrollment of Standard Lives for Issue Year y | $=\sum_{z=1}^{30} l_{z, y(s t)}$ |  |
| AX51:BQ80 | Aggregate Actual Lapse Rates of Impaired Lives by Cohort $\left(\operatorname{Aggq}_{z, y(i m)}\right)$ | $=\sum_{b=1}^{5} q_{z, y, b(i m)}$ |  |
| BT51:CM80 | Aggregate Combined Actual Lapse Rates by Cohort | $=\sum_{b=1}^{5} q_{z, y, b}$ |  |
| AB89:AU118 | Aggregate Enrollment of Impaired Lives by Cohort $\left(l_{z, y(i m)}\right)$ | $=\sum_{\mathrm{b}=1}^{5} l_{\mathrm{z}, \mathrm{y}, \mathrm{~b}(\mathrm{~m})}$ |  |
| AB119:AU119 | Aggregate Exposure of Impaired Lives for Issue Year y | $=\sum_{z=1}^{30} l_{z, y(i m)}$ |  |

## Interblock Subsidy.xls - Current Market Summary 5 blocks

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AX89:BQ118 | Aggregate Premium Rates Before Age Adjustment, by Cohort | $\begin{array}{r} 0, \quad x<1 \text { or } \operatorname{Aggl}_{z, y(s t)}+\operatorname{Aggl}_{z, y(\mathrm{im})}=0 \\ =\quad \sum_{\mathrm{i}=1}^{5}\left[\text { UnadjPremRate } \mathrm{e}_{\mathrm{z}, \mathrm{y}, \mathrm{i}} *\left(l_{z, \mathrm{y}, \mathrm{i}(\mathrm{st})}+\mathrm{l}_{\mathrm{z}, \mathrm{y}, \mathrm{i}(\mathrm{im})}\right)\right] / \sum_{\mathrm{j}=1}^{5}\left(\mathrm{l}_{z, \mathrm{y}, \mathrm{j}(\mathrm{st})}+\mathrm{l}_{z, \mathrm{y}, \mathrm{j}(\mathrm{im})}\right), \\ \text { otherwise } \end{array}$ |  |
| BT89:CM118 | Aggregate Age-Adjusted Premium Rates by Cohort (AggAgeAdjPremRate ${ }_{z, \mathrm{y}}$ ) |  |  |
| AB126:AU155 | Aggregate Age-Adjusted Market New Business Premium Rates by Cohort | $\begin{array}{llr} = & 0, & \mathrm{x}<1 \\ & \text { MarketRate }_{\mathrm{z}} * \text { PAF }_{\mathrm{x}}, & \text { otherwise } \end{array}$ |  |
| AX126:BQ155 | Aggregate Standard Lives Claim Levels by Cohort (AggClaims ${ }_{z, y(s t)}$ ) | $\begin{array}{ll}  & 0, \end{array} \operatorname{Aggl}_{z, \mathrm{y}(\mathrm{st})}=0$ |  |

## Interblock Subsidy.xls - Current Market Summary 5 blocks

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| BT126:CM155 | Aggregate Impaired Lives Claim Levels by Cohort (AggClaims $\left.{ }_{z, y(\text { im })}\right)$ | $\begin{array}{lr} 0, & \text { Aggl }_{z, y(\mathrm{im})}=0 \\ = & \\ \sum_{\mathrm{i}=1}^{5}\left(\mathrm{l}_{\mathrm{z}, \mathrm{y}, \mathrm{i}(\mathrm{im})} * \mathrm{C}_{\mathrm{z,y,j}, \mathrm{i} \mathrm{im})}\right) / \sum_{\mathrm{j}=1}^{5} \mathrm{l}_{\mathrm{z}, \mathrm{y}, \mathrm{j}(\mathrm{im})}, & \text { otherwise } \end{array}$ |  |
| AB164:AU193 | Aggregate Standard Lives Expense Levels by Cohort $\left(\operatorname{AggExp}_{z, \mathrm{y}(\mathrm{st})}\right)$ | $=\begin{array}{lr} 0, & \operatorname{Aggl}_{z, \mathrm{y}(\mathrm{st})}=0 \\ = & \\ \sum_{\mathrm{i}=1}^{5}\left(l_{\mathrm{z}, \mathrm{y}, \mathrm{i}(\mathrm{st})} * \operatorname{Exp}_{z, \mathrm{y}, \mathrm{i}(\mathrm{st})}\right) / \sum_{\mathrm{j}=1}^{5} \mathrm{l}_{\mathrm{z}, \mathrm{y}, \mathrm{j}(\mathrm{st})}, & \text { otherwise } \end{array}$ |  |
| AX164:BQ193 | Aggregate Impaired Lives Expense Levels by Cohort $\left(\operatorname{AggExp}_{z, y(i m)}\right)$ |  |  |
| BT164:CM193 | Aggregate Average Expense Levels by Cohort |  |  |
| CP164:CP193 | Aggregate Enrollment of Standard Lives by Projection Year $\left(\mathrm{Aggl}_{\mathrm{Z}(\mathrm{st})}\right)$ | $=\sum_{b=1}^{5} l_{\text {z,y,b(st) }}$ |  |

## Interblock Subsidy.xls - Current Market Summary 5 blocks

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| CP194 | Aggregate Exposure of Standard Lives | $=\sum_{z=1}^{30} \operatorname{Aggl}_{Z(\mathrm{st})}$ |  |
| CQ164:CQ193 | Aggregate Premium of Standard Lives by Projection Year $\left(\right.$ AggPremium $\left.{ }_{z(\mathrm{st})}\right)$ | $=\sum_{b=1}^{5} \mathrm{P}_{\mathrm{z}, \mathrm{~b}(\mathrm{st})}$ |  |
| CQ194 | Aggregate Premium of Standard Lives <br> (AggPremium $_{\text {st }}$ ) | $=\sum_{\mathrm{z}=1}^{30} \text { AggPremium }_{\mathrm{z}(\mathrm{st})}$ |  |
| CR164:CR193 | Aggregate Claims of Standard Lives by Projection Year (AggClaims ${ }_{z(s t)}$ ) | $=\sum_{b=1}^{5} C_{z, b(s t)}$ |  |
| CR194 | Aggregate Claims of Standard Lives (AggClaims ${ }_{\mathrm{st}}$ ) | $=\sum_{\mathrm{z}=1}^{30} \text { AggClaims }_{\mathrm{z}(\mathrm{st})}$ |  |
| CS164:CS193 | Aggregate Loss Ratio by Projection Year for Standard Lives | $=$ AggClaims $_{\text {z(st) }} /$ AggPremium $_{\text {Z(st) }}$ |  |
| CS194 | Aggregate Loss Ratio for Standard Lives | $=$ AggClaims $_{\text {st }} /$ AggPremium $_{\text {st }}$ |  |

## Interblock Subsidy.xls - Current Market Summary 5 blocks

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| CV164:CV193 | Aggregate Enrollment of Impaired Lives by Projection Year $\left(\right.$ Aggl $\left._{z(i m)}\right)$ | $=\sum_{b=1}^{5} l_{z, y, b(i m)}$ |  |
| CV194 | Aggregate Exposure of Impaired Lives | $=\sum_{\mathrm{z}=1}^{30} \operatorname{Aggl}_{\mathrm{z}(\mathrm{im})}$ |  |
| CW164:CW193 | Aggregate Premium of Impaired Lives by Projection Year (AggPremium zim ) | $=\sum_{b=1}^{5} \mathrm{P}_{\mathrm{z}, \mathrm{~b}(\mathrm{im})}$ |  |
| CW194 | Aggregate Premium of Impaired Lives <br> (AggPremium $_{\mathrm{im}}$ ) | $=\sum_{\mathrm{z}=1}^{30} \text { AggPremium }_{\mathrm{z}(\mathrm{im})}$ |  |
| CX164:CX193 | Aggregate Claims of Impaired Lives by Projection Year (AggClaims ${ }_{z(\text { im })}$ ) | $=\sum_{b=1}^{5} C_{z, b(i m)}$ |  |
| CX194 | Aggregate Claims of Impaired Lives (AggClaimsim) | $=\sum_{\mathrm{z}=1}^{30} \text { AggClaims }_{\mathrm{z}(\mathrm{im})}$ |  |

## Interblock Subsidy.xls - Current Market Summary 5 blocks

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| CY164:CY193 | Aggregate Loss Ratio by Projection Year for Impaired Lives | $=$ AggClaims $_{\text {z(im) }} /$ AggPremium $_{\text {z(im) }}$ | Formula applies only for $\mathrm{z}=2,3,4, \ldots, 30$. |
| CY194 | Aggregate Loss Ratio for Impaired Lives | $=$ AggClaims $_{\text {im }} /$ AggPremium $_{\text {im }}$ |  |
| DG159 | Trend Scenario Number | From Global Assumptions!G102 |  |
| DJ159 | Year at Which Pooling Begins | From Current Market Assump 5 blocks!E3 |  |
| DA164:DA193 | Aggregate Enrollment by Projection Year $\left(\mathrm{Aggl}_{\mathrm{z}}\right)$ | $=\operatorname{Aggl}_{\text {(st) }}+\operatorname{Aggl}_{\mathrm{z}(\mathrm{im})}$ |  |
| DA194 | Aggregate Exposure (Aggl) | $=\sum_{\mathrm{z}=1}^{30} \mathrm{Aggl}_{\mathrm{z}}$ |  |
| DB164:DB193 | Aggregate Premium by Projection Year (AggPremium ${ }_{z}$ ) | $=$ AggPremium $_{\text {z(st) }}+$ AggPremium $_{\text {z(im) }}$ |  |
| DB194 | Aggregate Premium (AggPremium) | $=\sum_{\mathrm{z}=1}^{30} \text { AggPremium }_{\mathrm{z}}$ |  |

## Interblock Subsidy.xls - Current Market Summary 5 blocks

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DC164:DC193 | Aggregate Claims by Projection Year <br> (AggClaims ${ }^{\text {) }}$ ) | $=$ AggClaims $_{\text {z(st) }}+$ AggClaims $_{\text {z(im) }}$ |  |
| DC194 | Aggregate Claims (AggClaims) | $=\sum_{\mathrm{z}=1}^{30} \text { AggClaims }_{\mathrm{z}}$ |  |
| DD164:DD193 | Aggregate Claims PMPM by Projection Year | $=$ AggClaims $_{\mathrm{z}} / \mathrm{Aggl}_{\mathrm{z}} / 12$ |  |
| DD194 | Aggregate Claims PMPM | = AggClaims / Aggl / 12 |  |
| DE164:DE193 | Aggregate Loss Ratio by Projection Year $\left(\mathrm{AggLR}_{\mathrm{z}}\right)$ | $=$ AggClaims $_{\text {L }} /$ AggPremium $_{\text {z }}$ |  |
| DE194 | Aggregate Loss Ratio | = AggClaims / AggPremium |  |
| DF164:DF193 | Aggregate Expected Loss Ratio by Projection Year (AggExpectedLR ${ }_{z}$ ) | $=\text { ExpectedLR }_{\mathrm{z}}$ <br> ExpectedLR ${ }_{z}$ is from the appropriate cell of Current Market Assump 5 blocks!AC19:AC48 |  |
| DG164:DG193 | Aggregate Actual to Expected Loss Ratio by Projection Year | $=$ AggLR $_{\mathrm{z}} /$ AggExpectedLR $_{\text {z }}$ |  |

## Interblock Subsidy.xls - Current Market Summary 5 blocks

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DH164:DH193 | Aggregate Rolling TwoYear Loss Ratio | $\begin{array}{rlr}  & \text { AggClaims }_{1} / \text { AggPremium }_{1}, & \mathrm{z}=1 \\ \left.=\quad \begin{array}{ll} \left(\text { AggClaims }_{z-1}+\text { AggClaims }_{z}\right) / \\ \left(\text { AggPremium }_{z-1}+\text { AggPremium }_{z}\right), & \mathrm{z}=2,3,4, \ldots, 30 \end{array}, \begin{array}{l}  \\ \end{array}\right) \end{array}$ |  |
| DI164:DI193 | Aggregate Premium Less Aggregate Claims by Projection Year (AggPminusAggC ${ }_{z}$ ) | $=$ AggPremium $_{\mathrm{z}}-$ AggClaims $_{\text {z }}$ |  |
| DI194 | Aggregate Premium Less Aggregate Claims | = AggPremium - AggClaims |  |
| DJ164:DJ193 | Aggregate Expenses by Projection Year $\left(\mathrm{AggExp}_{z}\right)$ | $=\sum_{b=1}^{5} \operatorname{Exp}_{\mathrm{z}, \mathrm{~b}}$ |  |
| DJ194 | Aggregate Expenses (AggExp) | $=\sum_{z=1}^{30} \operatorname{AggExp}_{z}$ |  |
| DK164:DK193 | Aggregate Expense Ratio by Projection Year | $=\operatorname{AggExp}_{z} /$ AggPremium $_{\text {z }}$ |  |
| DK194 | Aggregate Expense Ratio | = AggExp / AggPremium |  |

## Interblock Subsidy.xls - Current Market Summary 5 blocks

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DL164:DL193 | Aggregate Gain by Projection Year $\left(\right.$ AggGain $\left._{z}\right)$ | $=$ AggPremium $_{\mathrm{z}}-$ AggClaims $_{\mathrm{z}}-$ AggExp $_{\mathrm{z}}$ |  |
| DL194 | Aggregate Gain (AggGain) | $=\sum_{\mathrm{z}=1}^{30} \text { AggGain }_{\mathrm{z}}$ |  |
| DM164:DM193 | Aggregate Gain as a Percentage of Aggregate Premium by Projection Year | $=$ AggGain $_{\text {z }} /$ AggPremium $_{\text {z }}$ |  |
| DM194 | Aggregate Gain as a Percentage of Aggregate Premium | = AggGain / AggPremium |  |
| DN164:DN193 | Aggregate Risk-Based Capital by Projection Year $\left(\mathrm{AggRBC}_{z}\right)$ | $=\sum_{b=1}^{5} \mathrm{RBC}_{\mathrm{z}, \mathrm{~b}}$ |  |
| DO164:DO193 | Aggregate Opportunity Cost of Capital by Projection Year $\left(\mathrm{AggOCC}_{\mathrm{z}}\right)$ | $=-\operatorname{AggRBC}_{z} * O C C \%$ <br> OCC\% is from Global Assumptions!D84 |  |
| DO194 | Aggregate Opportunity Cost of Capital | $=\sum_{\mathrm{z}=1}^{30} \mathrm{AggOCC}_{\mathrm{z}}$ |  |

## Interblock Subsidy.xls - Current Market Summary 5 blocks

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| DP164:DP193 | Aggregate Economic Gain <br> by Projection Year <br> $\left(\right.$ AggEconGain $\left._{z}\right)$ | $=$ AggGain $_{\mathrm{z}}+$ OCC $_{z}$ |  |
| DP194 | Aggregate Economic Gain | $=\sum_{\mathrm{z}=1}^{30}$ AggGain $_{\mathrm{z}}$ |  |
| DQ164:DQ193 | Market New Business Rate | $=$ MarketRate $_{\mathrm{z}}$ | The values in cells <br> DQ164:DU193 are <br> duplicate copies of <br> values calculated <br> elsewhere; they are <br> repeated here for <br> convenience. |
| DR164:DR193 | Company New Business <br> Rate | $=$ ComNewBusnRate $_{z}$ |  |
| DS164:DS193 | Implemented Rate Increase <br> for New Business | $=$ ImpRateIncNew $_{z}$ |  |
| DS194 | Average Rate Increase | $=\sum_{\mathrm{z}=2}^{30}$ ImpRateIncNew $_{z} / 29$ |  |

## Interblock Subsidy.xls - Current Market Summary 5 blocks

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DS195 | Minimum Rate Increase | $=\operatorname{Min}\left(\operatorname{MinRI}_{1}, \operatorname{MinRI}_{2}, \operatorname{MinRI}_{3}, \operatorname{MinRI}_{4}, \operatorname{MinRI}_{5}\right)$ <br> MinRI $_{\mathrm{b}}$ are from cell DT195 of CM-1, CM-2, CM-3, CM-4, and CM-5, respectively |  |
| DS196 | Maximum Rate Increase | $=\operatorname{Max}\left(\operatorname{MaxRI}_{1}, \operatorname{MaxRI}_{2}, \operatorname{MaxRI}_{3}, \operatorname{MaxRI}_{4}, \text { MaxRI }_{5}\right)$ <br> MaxRI $_{b}$ are from cell DT196 of CM-1, CM-2, CM-3, CM-4, and CM-5, respectively |  |
| DT164:DT193 | Implemented Rate Increase for Renewal Business | $=$ ImpRateIncRen $_{\text {z }}$ |  |
| DU164:DU183 | Aggregate Actual Sales by Projection Year (ActualSales ${ }_{z}$ ) | $=$ AggSales $_{\text {z, }}$ | Formula applies only for $\mathrm{z}=1,2,3, \ldots, 20$. |
| DB197 | Present Value of Aggregate Premium (PVAggPremium) | $=\mathrm{NPV}_{\text {int }}\left(\mathrm{AggPremium}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ | For all of the following present value calculations, int is from Global Assumptions!B63, and the present values are taken over $\mathrm{z}=1,2,3$, ..., 30 . |

## Interblock Subsidy.xls - Current Market Summary 5 blocks

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DC197 | Present Value of Aggregate Claims <br> (PVAggClaims) | $=\mathrm{NPV} \mathrm{int}^{\text {int }}\left(\mathrm{AggClaims}_{z}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DI197 | Present Value of Aggregate Premium Less Aggregate Claims (PVAggPminusAggC) | $=\mathrm{NPV}_{\text {int }}\left(\right.$ AggPminusAggC $\left.^{\text {z }}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DJ197 | Present Value of Aggregate Expenses <br> (PVAggExp) | $=\mathrm{NPV}_{\mathrm{int}}\left(\operatorname{AggExp}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DL197 | Present Value of Aggregate Gain (PVAggGain) | $=N P V_{\text {int }}\left(\operatorname{AggGain}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DO197 | Present Value of Aggregate Opportunity Cost of Capital (PVAggOCC) | $=\mathrm{NPV}_{\text {int }}\left(\mathrm{AggOCC}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DP197 | Present Value of Aggregate Economic Gain (PVAggEconGain) | $=\mathrm{NPV}_{\text {int }}\left(\right.$ AggEconGain $\left.^{\prime}\right) * \sqrt{1+\mathrm{int}}$ |  |

## Interblock Subsidy.xls - Current Market Summary 5 blocks

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| DB198 | Present Value of Aggregate <br> Premium as a Percentage of <br> Present Value of Aggregate <br> Premium | $=$ PVAggPremium / PVAggPremium | Identically equal to <br> $100 \%$ |
| DC198 | Present Value of Aggregate <br> Claims as a Percentage of <br> Present Value of Aggregate <br> Premium | $=$ PVAggClaims / PVAggPremium |  |
| DI198 | Present Value of Aggregate <br> Premium Less Aggregate <br> Claims as a Percentage of <br> Present Value of Aggregate <br> Premium | $=$ PVAggPminusAggC / PVAggPremium |  |
| DJ198 | Present Value of Aggregate <br> Expenses as a Percentage of <br> Present Value of Aggregate <br> Premium | $=$ PVAggExp / PVAggPremium |  |
| DL198 | Present Value of Aggregate <br> Gain as a Percentage of <br> Present Value of Aggregate <br> Premium | $=$ PVAggGain / PVAggPremium |  |

## Interblock Subsidy.xls - Current Market Summary 5 blocks

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| DO198 | Present Value of Aggregate <br> Opportunity Cost of Capital <br> as a Percentage of Present <br> Value of Aggregate <br> Premium | $=$ PVAggOCC / PVAggPremium |  |
| DP198 | Present Value of Aggregate <br> Economic Gain as a <br> Percentage of Present Value <br> of Aggregate Premium | $=$ PVAggEconGain / PVAggPremium |  |

## Interblock Subsidy.xls - CM-1_TLR, CM-2_TLR, etc.

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| D4 | Target Lifetime Loss Ratio (TargetLR) | From Current Market Assump 5 blocks!L4 |  |
| D7 | Flag to Include Trend (TrendFlag) | From Current Market Assump 5 blocks!L7 | Hardcoded value; value of 1 means to include trend in projections, value of 0 means to exclude trend. |
| D11 | Initial Reference Claim Cost for Standard Lives (InitRefClaims ${ }_{\mathrm{st}}$ ) | From Global Assumptions!D49 | Best estimate of starting claim costs for standard lives |
| F11 | Pricing Assumption of Initial Reference Claim Cost for Standard Lives (InitRefClaims $_{\text {st(prr) }}$ ) | $=$ InitRefClaims $_{\text {st }}$ | Standard lives starting claim costs used in initial pricing; the model provides the flexibility to adjust the baseline claims for use in pricing, but the model currently does not make any such adjustment. |
| D12 | Initial Reference Claim Cost for Impaired Lives <br> (InitRefClaims ${ }_{i m}$ ) | From Global Assumptions!D60 | Best estimate of starting claim costs for impaired lives |

## Interblock Subsidy.xls - CM-1_TLR, CM-2_TLR, etc.

| Cells | Description | Formula | Comments <br> F12Pricing Assumption of <br> Initial Reference Claim Cost <br> for Impaired Lives <br> (InitRefClaimsim(pr) $)$ |
| :--- | :--- | :--- | :--- |
| $=$ | Inpaired lives starting <br> claim costs used in <br> initial pricing; the <br> model provides the <br> flexibility to adjust the <br> baseline claims for use <br> in pricing, but the <br> model currently does <br> not make any such <br> adjustment. |  |  |
| E14 | Durational Deterioration <br> Limitation Period <br> (DDLP) | From Current Market Assump 5 blocks!M14 |  |
| E15 | Expected Premium Rate <br> (ExpPrem) | From Current Market Assump 5 blocks!M15 |  |
| J6:J10 | Durational Rate Increase <br> (DRI $)$ | From the appropriate cell of Current Market Assump 5 blocks!R6:R10 |  |

## Interblock Subsidy.xls - CM-1_TLR, CM-2_TLR, etc.

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| B19:B48 | Standard Lives Base Lapse Rates Used in Pricing ( $\mathrm{q}_{\mathrm{x}(\mathrm{st}, \mathrm{pr})}$ ) | $=\max \left\{\mathrm{q}_{\min (\mathrm{st})}, \min \left[\mathrm{q}_{\max (\mathrm{st})}\right.\right.$, Baseq $_{\mathrm{x}(\mathrm{st})}+\left(\left(\left(\mathrm{PAF}_{\mathrm{x}+1} /\right.\right.\right.$ PAF $_{\mathrm{x}} *$ AccumDRI $_{\mathrm{x}+1}$ <br> $/$ AccumDRI $\left.\left._{\mathrm{x}}\right)-1\right)$ * LapseAdjTrend $\left.{ }_{\mathrm{st}}\right)+\left(\left(\right.\right.$ AccumDRI $\left._{\mathrm{x}+1}-1\right)$ * <br> LapseAdjMkt ${ }_{\mathrm{st}}$ ]\} <br> $\mathrm{q}_{\mathrm{min}(\mathrm{st})}$ is from Global Assumptions!D40 <br> $\mathrm{q}_{\max (\mathrm{st})}$ is from Global Assumptions!D39 <br> Baseq $_{\text {(st, pr) }}$ is from the appropriate cell of Global Assumptions!E29:E33 <br> LapseAdjTrend $_{\text {st }}$ is from Global Assumptions!D36 <br> LapseAdjMkt $_{\text {st }}$ is from Global Assumptions!D37 | Baseline standard lives lapse rates adjusted to reflect higher anticipated lapses due to rate increases exceeding claim trend and renewal rates exceeding the market new business rate |
| C19:C48 | Impaired Lives Base Lapse Rates Used in Pricing $\left(\mathrm{q}_{\mathrm{x}(\mathrm{im}, \mathrm{pr})}\right)$ |  | Baseline impaired lives lapse rates adjusted to reflect higher anticipated lapses due to rate increases exceeding claim trend during durational deterioration limitation period; beyond DDLP, impaired lives lapse rates are equal to standard lives lapse rates. |
| D19:D48 | Rate of Impairment Used in Pricing $\left(\mu_{\mathrm{x}(\mathrm{pr})}\right)$ | $\begin{array}{lll} \hline= & 0, & x>\operatorname{DDLP} \\ \mu_{\mathrm{x}}, & \mathrm{x} \leq \mathrm{DDLP} \end{array}$ |  |

## Interblock Subsidy.xls - CM-1_TLR, CM-2_TLR, etc.

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| E19:E48 | Number of Standard Lives $\left(\mathrm{l}_{\mathrm{x}(\mathrm{st})}\right)$ | $\begin{array}{ll} = & 1, \\ & \mathrm{l}_{\mathrm{x}-1(\mathrm{st})} *\left(1-\mu_{\mathrm{x}-1(\mathrm{pr})}\right) *\left(1-\mathrm{q}_{\mathrm{x}-1(\mathrm{st}, \mathrm{pr})}\right), \end{array}$ | $\begin{array}{r} x=1 \\ x=2,3,4, \ldots, 30 \end{array}$ | The values in columns E, F, and G represent proportions of the number of first-year standard lives. |
| F19:F48 | Number of Impaired Lives ( $\mathrm{l}_{\mathrm{x}(\mathrm{im})}$ ) | $\begin{aligned} = & 0, \\ & {\left[l_{\mathrm{x}-1(\mathrm{~mm})} *\left(1-\mathrm{q}_{\mathrm{x}-1(\mathrm{~m}, \mathrm{pr})}\right)\right]+\left(\mathrm{l}_{\mathrm{x}-1(\mathrm{st})} * \mu_{\mathrm{x}-1(\mathrm{pr})}\right), } \end{aligned}$ | $\begin{array}{r} x=1 \\ x=2,3,4, \ldots, 30 \end{array}$ |  |
| G19:G48 | Number of Total Lives $\left(l_{x}\right)$ | $=l_{\text {x(st) }}+\mathrm{l}_{\mathrm{x}(\mathrm{im})}$ |  |  |
| H19:H48 | Accumulated Trend (AccumTrend ${ }^{\text {) }}$ ) | $\begin{aligned} = & 1, \\ & \text { AccumTrend }_{x-1} *[1+(\text { Trend } * \text { TrendFlag })], \end{aligned}$ <br> Trend is from Global Assumptions!D21 | $\begin{array}{r} x=1 \\ x=2,3,4, \ldots, 30 \end{array}$ |  |
| I19:I48 | Discount Factor $\left(\mathrm{v}_{\mathrm{x}}\right)$ | $\begin{array}{ll} = & 1, \\ & v_{x-1} /(1+\mathrm{int}), \end{array}$ | $\begin{array}{r} x=1 \\ x=2,3,4, \ldots, 30 \end{array}$ |  |
| J19:J48 | Premium Age Factor $\left(\mathrm{PAF}_{\mathrm{x}}\right)$ | $\begin{aligned} = & 1, \\ & \operatorname{PAF}_{x-1} *(1+\text { PremGrowthAge }), \end{aligned}$ <br> PremGrowthAge is from Global Assumptions!C25 | $\begin{array}{r} x=1 \\ x=2,3,4, \ldots, 30 \end{array}$ |  |

## Interblock Subsidy.xls - CM-1_TLR, CM-2_TLR, etc.

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| K19:K48 | Pricing Claims ( $\mathrm{C}_{\mathrm{x}(\mathrm{pr})}$ ) | InitRefPrem is from Global Assumptions!C24 <br> MorbAdj ${ }_{s t}$ is from Global Assumptions!D51 <br> $\mathrm{DF}_{\mathrm{x}}$ is from the appropriate cell of CM-1!D12:D41 | Standard lives’ claims are adjusted each year for morbidity, duration (within the DDLP), aging, and trend. <br> Impaired lives’ claims are adjusted each year for aging and trend. |
| L19:L48 | Annual Durational Rate Increase <br> $\left(\mathrm{ADRI}_{\mathrm{x}}\right)$ | $\begin{array}{lr} 0, & x=1 \\ \text { DRI }_{x}, & x=2,3,4, \ldots, 30 \end{array}$ |  |
| M19:M49 | Accumulated Durational Rate Increase Factor (AccumDRI ${ }_{x}$ ) | $=$1, $x=1$ <br>  AccumDRI $_{x-1} *\left(1+\right.$ ADRI $\left._{x}\right)$,$\quad x=2,3,4, \ldots, 31$ | A $31^{\text {st }}$-year value is needed for the calculation of $\mathrm{q}_{30(\mathrm{st}, \mathrm{pr})}$. |

## Interblock Subsidy.xls - CM-1_TLR, CM-2_TLR, etc.

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| N19:N48 | Pricing Premium $\left(\mathrm{P}_{\mathrm{x}(\mathrm{pr})}\right)$ | $\begin{array}{r} \mathrm{l}_{1} * \sum_{\mathrm{i}=1}^{30}\left(\mathrm{C}_{\mathrm{i}(\mathrm{pr})} * \mathrm{v}_{\mathrm{i}}\right) / \sum_{\mathrm{j}=1}^{30}\left(\mathrm{l}_{\mathrm{j}} * \mathrm{PAF}_{\mathrm{j}} * \text { AccumTrend }_{\mathrm{j}} * \mathrm{v}_{\mathrm{j}} * \text { AccumDRI }_{\mathrm{j}}\right) \\ =\quad \mathrm{x}=1 \\ \\ \\ \mathrm{P}_{1(\mathrm{pr})} / \mathrm{l}_{1} * \mathrm{PAF}_{\mathrm{x}} * \mathrm{l}_{\mathrm{x}} * \text { AccumTrend }_{\mathrm{x}} * \text { ADRI }_{\mathrm{x}} / \mathrm{ADRI}_{1}, \\ \mathrm{x}=2,3,4, \ldots, 30 \end{array}$ <br> $\mathrm{PAF}_{\mathrm{x}}$ is from the appropriate cell of Current Market Summary 5 blocks!J12:J41 |  |
| O19:048 | Pricing Loss Ratio $\left(\mathrm{LR}_{\mathrm{x}(\mathrm{pr})}\right)$ | $=\mathrm{C}_{\mathrm{x}(\mathrm{pr})} / \mathrm{P}_{\mathrm{x}(\mathrm{pr})}$ |  |

## Interblock Subsidy.xls - CM-1_TLR, CM-2_TLR, etc.

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| P19:P48 | Pricing Expenses $\left(\operatorname{Exp}_{\mathrm{x}(\mathrm{pr})}\right)$ | $\begin{array}{rl} =\mathrm{l}_{\mathrm{X}} & * \operatorname{Exppol}(\mathrm{x}) *(1+\text { Inflation })^{\mathrm{x}-1} \\ & +\operatorname{Exp}_{\% \mathrm{C}(\mathrm{x})} * \mathrm{C}_{\mathrm{x}(\mathrm{pr})} \\ & +\operatorname{Comm}_{\mathrm{B}(\mathrm{x})} * \mathrm{P}_{1(\mathrm{pr})} / \mathrm{l}_{1} * \mathrm{l}_{\mathrm{x}} \\ & +\operatorname{Comm}_{\mathrm{R}(\mathrm{x})} *\left[\mathrm{P}_{\mathrm{x}(\mathrm{pr})}-\left(\mathrm{P}_{1(\mathrm{pr})} / \mathrm{l}_{1} * \mathrm{l}_{\mathrm{x}}\right)\right] \\ & + \text { Expoth\%P(x) } * \mathrm{P}_{\mathrm{x}(\mathrm{pr})} \end{array}$ <br> Exppol(x) is from the appropriate cell of Current Market Summary 5 blocks!E12:E41 <br> Inflation is from Global Assumptions!B64 <br> Exp $_{\% \mathrm{C}(\mathrm{x})}$ is from the appropriate cell of Current Market Summary 5 blocks!F12:F41 <br> Comm $_{\mathrm{B}(\mathrm{x})}$ is from the appropriate cell of Current Market Summary 5 blocks!G12:G41 <br> Comm $_{\mathrm{R}(\mathrm{x})}$ is fromthe appropriate cell of Current Market Summary 5 blocks!H12:H41 <br> Expoth\% $\mathrm{P}_{(x)}$ is from the appropriate cell of Current Market Summary 5 blocks!I12:I41 |  |
| Q19:Q48 | Pricing Expense as a Percentage of Pricing Premium | $=\operatorname{Exp}_{\mathrm{x}(\mathrm{pr})} / \mathrm{P}_{\mathrm{x}(\mathrm{pr})}$ |  |
| R19:R48 | Pricing Operating Gain $\left(\right.$ Gain $\left._{\mathrm{x}(\mathrm{pr})}\right)$ | $=\mathrm{P}_{\mathrm{x}(\mathrm{pr})}-\mathrm{C}_{\mathrm{x}(\mathrm{pr})}-\operatorname{Exp}_{\mathrm{x}(\mathrm{pr})}$ |  |

## Interblock Subsidy.xls - CM-1_TLR, CM-2_TLR, etc.

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| S19:S48 | Pricing Gain as a Percentage of Pricing Premium | $=\mathrm{Gain}_{\mathrm{x}(\mathrm{pr})} / \mathrm{P}_{\mathrm{x}(\mathrm{pr})}$ |  |
| K50 | Simple Sum of Pricing Claims (SumClaims) | $=\sum_{x=1}^{30} C_{x(\mathrm{pr})}$ |  |
| N50 | Simple Sum of Pricing <br> Premiums <br> (SumPrem) | $=\sum_{x=1}^{30} \mathrm{P}_{\mathrm{x}(\mathrm{pr})}$ |  |
| O50 | Pricing Loss Ratio, Using Simple Sums | = SumClaims / SumPrem |  |
| P50 | Simple Sum of Pricing <br> Expenses <br> (SumExp) | $=\sum_{\mathrm{x}=1}^{30} \operatorname{Exp}_{\mathrm{x}(\mathrm{pr})}$ |  |
| Q50 | Pricing Expense Ratio, Using Simple Sums | = SumExp / SumPrem |  |
| R50 | Simple Sum of Pricing Gains (SumGain) | $=\sum_{x=1}^{30} \operatorname{Gain}_{\mathrm{x}(\mathrm{pr})}$ |  |

## Interblock Subsidy.xls - CM-1_TLR, CM-2_TLR, etc.

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| S50 | Pricing Gain Ratio, Using Simple Sums | = SumGain / SumPrem |  |
| K51 | Present Value of Pricing Claims over 10 Years (PVClaims ${ }_{10}$ ) | $=\mathrm{NPV}_{\text {int }}\left(\mathrm{C}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}, \quad$ where NPV is taken over $\mathrm{x}=1,2,3, \ldots .10$ |  |
| N51 | Present Value of Pricing Premiums over 10 Years (PVPrem $_{10}$ ) | $=\mathrm{NPV}_{\text {int }}\left(\mathrm{P}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}, \quad$ where NPV is taken over $\mathrm{x}=1,2,3, \ldots .10$ |  |
| O51 | Pricing Loss Ratio, Using 10-Year NPVs | $=$ PVClaims $_{10} /$ PVPrem $_{10}$ |  |
| P51 | Present Value of Pricing Expenses over 10 Years (PVExp ${ }_{10}$ ) | $=N P V_{\text {int }}\left(\operatorname{Exp}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}$, where NPV is taken over $\mathrm{x}=1,2,3, \ldots .10$ |  |
| Q51 | Pricing Expense Ratio, Using 10-Year NPVs | $=$ PVExp $_{10} /$ PVPrem $_{10}$ |  |
| R51 | Present Value of Pricing Gains over 10 Years (PVGain ${ }_{10}$ ) | $=\mathrm{NPV}_{\mathrm{int}}\left(\operatorname{Gain}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}},$ <br> where NPV is taken over $\mathrm{x}=1,2,3, \ldots .10$ |  |
| S51 | Pricing Gain Ratio, Using 10-Year NPVs | $=$ PVGain $_{10} /$ PVPrem $_{10}$ |  |

## Interblock Subsidy.xls - CM-1_TLR, CM-2_TLR, etc.

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| K52 | Present Value of Pricing Claims over 30 Years (PVClaims ${ }_{30}$ ) | $=\mathrm{NPV}_{\text {int }}\left(\mathrm{C}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}, \quad$ where NPV is taken over $\mathrm{x}=1,2,3, \ldots .30$ |  |
| N52 | Present Value of Pricing Premiums over 30 Years (PVPrem 30 ) | $=\mathrm{NPV}_{\text {int }}\left(\mathrm{P}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}, \quad$ where NPV is taken over $\mathrm{x}=1,2,3, \ldots .30$ |  |
| O52 | Pricing Loss Ratio, Using 30-Year NPVs | $=$ PVClaims $_{30} /$ PVPrem $_{30}$ |  |
| P52 | Present Value of Pricing Expenses over 30 Years ( $\mathrm{PVExp}_{30}$ ) | $=N P V_{\text {int }}\left(\operatorname{Exp}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}$, where NPV is taken over $\mathrm{x}=1,2,3, \ldots .30$ |  |
| Q52 | Pricing Expense Ratio, Using 30-Year NPVs | $=$ PVExp $_{30} /$ PVPrem $_{30}$ |  |
| R52 | Present Value of Gains over 30 Years <br> (PVGain ${ }_{30}$ ) | $=\mathrm{NPV}_{\mathrm{int}}\left(\mathrm{Gain}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}$ <br> where NPV is taken over $\mathrm{x}=1,2,3, \ldots .30$ |  |
| S52 | Pricing Gain Ratio, Using 30-Year NPVs | $=$ PVGain $_{30} /$ PVPrem $_{30}$ |  |

## Interblock Subsidy.xls - CM-1_TLR, CM-2_TLR, etc.

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| K53 | PV of Pricing Claims as a <br> Percentage of PV of Pricing <br> Premium | $=$ PVClaims $_{30} /$ PVPrem $_{30}$ | Model calculations <br> produce a stream of <br> premiums such that <br> this is equal to the <br> target lifetime loss <br> ratio. |
| N53 | PV of Pricing Premium as a <br> Percentage of PV of Pricing <br> Premium | $=$ PVPrem $_{30} /$ PVPrem $_{30}$ | Identically equal to <br> 1.000. |
| P53 | PV of Pricing Expenses as a <br> Percentage of PV of Pricing <br> Premium | $=$ PVExp $_{30} /$ PVPrem $_{30}$ |  |
| R53 | PV of Pricing Gain as a <br> Percentage of PV of Pricing <br> Premium | $=$ PVGain $_{30} /$ PVPrem $_{30}$ |  |
| G54 | Interest <br> (int) | From Global Assumptions!B63 |  |
| U19:U48 | Loss Ratio by Projection <br> Year <br> (ExpectedLR | See formula for cells Y51:BB51, below. |  |

## Interblock Subsidy.xls - CM-1_TLR, CM-2_TLR, etc.

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| V20:V48 | Loss Ratio by Projection Year for Two Most Recent Issue Years (ExpectedLR2Recent ${ }_{z}$ ) |  | Formula applies only for values of $\mathrm{z} \geq$ Intro $\mathrm{Yr}_{\mathrm{b}}+1$. |
| W19:W48 | Target Loss Ratios for Durational Pooling by Projection Year (PoolingTLR ${ }_{z}$ ) | $=$ExpectedLR2Recent $_{z}$, $\mathrm{z}=$ PoolingYr + IntroYr $_{\mathrm{b}}-1$ <br> $\mathrm{LR}_{\text {PoolingYr-1(pr) }}$, $\mathrm{z}=$ PoolingYr + Intro Yr $_{\mathrm{b}}$ <br> ExpectedLR $_{\mathrm{z}}$, otherwise <br> PoolingYr is from IBS Assump DUR pooling!E3 <br> Intro $\mathrm{Yr}_{1}$ is from IBS Assump DUR pooling!D11 | Formula applies only for values of $\mathrm{z} \geq$ Intro $\mathrm{Yr}_{\mathrm{b}}$. |
| X20:X48 | Target Loss Ratios for Durational Pooling for Second Year of Pool by Projection Year (2ndYearPoolingTLR ${ }_{z}$ ) | $\begin{aligned} = & {\left[\left(\text { ExpInforce }_{\mathrm{z}, \mathrm{z}} * \mathrm{LR}_{\mathrm{z}(\mathrm{pr})}\right)+\left(\text { ExpInforce }_{\mathrm{z}, \mathrm{z}-1} * \mathrm{LR}_{\mathrm{z}-1(\mathrm{pr})}\right)\right] } \\ & /\left(\text { ExpInforce }_{\mathrm{z}, \mathrm{z}}+\text { ExpInforce }_{\mathrm{z}, \mathrm{z}-1}\right) \end{aligned}$ | Note that this only appears in CM-1_TLR. <br> Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$. |
| X19:BA48 <br> (Y19:BB48 in CM-1_TLR) | Expected Premium Inforce at Age Adjusted Market New Business Rates by Cohort (ExpInforce ${ }_{z, \mathrm{x}, \mathrm{b}}$ ) | $=\begin{array}{ll} 0, & \begin{array}{r} \mathrm{y}<1 \text { or } \mathrm{y}>20 \\ \text { otherwise } \end{array} \\ \text { AgeAdjMktNewBusnRate }_{\text {ey, } \mathrm{b}, \mathrm{~b}} *\left(l_{\mathrm{z}, \mathrm{y}, \mathrm{~b}(\mathrm{st})}+\mathrm{l}_{\mathrm{z}, \mathrm{y}, \mathrm{~b}(\mathrm{im})}\right), \end{array}$ <br> AgeAdjMktNewBusnRate ${ }_{z, \mathrm{y}, \mathrm{b}}$ is from the appropriate cell of CMb !BT89:CM118, where b is the block number <br> $l_{\text {z,yb(st) }}$ is from the appropriate cell of CM- b!AB51:AU80, where $b$ is the block number <br> $l_{z, y, b(i m)}$ is from the appropriate cell of CM- $b!A B 89: A U 118$, where $b$ is the block number | Note that in this table, columns represent projection years, rows represent durations, and diagonals represent issue years. |

## Interblock Subsidy.xls - CM-1_TLR, CM-2_TLR, etc.

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| X51:BA51 <br> (Y51:BB51 in <br> CM-1_TLR) | Composite Expected Loss <br> Ratio by Projection Year for <br> Block 1 | $=\left(\sum_{i=1}^{30}\right.$ ExpInforce $\left._{z, \mathrm{i}} * \mathrm{LR}_{\mathrm{i}(\mathrm{pr})}\right) / \sum_{\mathrm{j}=1}^{30}$ ExpInforce $_{\mathrm{z}, \mathrm{j}}$ |  |
| X52:BA52 <br> (Y52:BB52 in <br> CM-1_TLR $)$Total Expected Premium <br> Inforce by Projection Year <br> $\left(\right.$ ExpInforce $\left._{\mathrm{z}}\right)$ | $=\sum_{\mathrm{x}=1}^{30}$ ExpInforce $_{\mathrm{z}, \mathrm{x}}$ |  |  |

## Interblock Subsidy.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| D4 | Reference Premium (InitRefPrem) | From Global Assumptions!C24 |  |
| D5 | Initial Reference Claim Cost for Standard Lives (InitRefClaims ${ }_{\mathrm{st}}$ ) | From Global Assumptions!D49 |  |
| D6 | Initial Reference Claim Cost for Impaired Lives (InitRefClaims ${ }_{i m}$ ) | From Global Assumptions!D60 |  |
| B12:B41 | Base Lapse Rates for Standard Lives (Baseq $_{\mathrm{x}(\mathrm{st})}$ ) | From the appropriate cell of Global Assumptions!D29:D33 |  |
| C12:C41 | Base Lapse Rates for Impaired Lives ( Baseq $_{x(\text { (im) }}$ ) | From Global Assumptions!C54 |  |
| D12:D41 | Duration Factor ( $\mathrm{DF}_{\mathrm{x}}$ ) | From the appropriate cell of Global Assumptions!B77:B81 |  |
| E12:E41 | Per Policy Expense Rates $\left(\operatorname{Exp}_{\text {Pol(x) }}\right)$ | From the appropriate cell of Global Assumptions!B70:B74 |  |

## Interblock Subsidy.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| F12:F41 | Percentage-of-Claims <br> Expense Rates <br> (Exp\%c(x)) | From the appropriate cell of Global Assumptions!C70:C74 |  |
| G12:G41 | Base Commission Rates $\left(\operatorname{Comm}_{B(x)}\right)$ | From the appropriate cell of Global Assumptions!D70:D74 |  |
| H12:H41 | Renewal Commission Rates $\left(\operatorname{Comm}_{R(x)}\right)$ | From the appropriate cell of Global Assumptions!E70:E74 |  |
| I12:I41 | Other Premium-Related Expense Rates <br> (Expoth\%p(x)) | From the appropriate cell of Global Assumptions!F70:F74 |  |
| J12:J41 | Premium Age Factor $\left(\mathrm{PAF}_{\mathrm{x}}\right)$ | $\begin{array}{lr} 1, & x=1 \\ & \operatorname{PAF}_{x-1} *(1+\text { PremGrowthAge }), \end{array} \quad x=2,3,4, \ldots, 30$ <br> PremGrowthAge is from Global Assumptions!C25 |  |
| K12:K41 | Rate of Impairment ( $\mu_{\mathrm{x}}$ ) | From the appropriate cell of Global Assumptions!E43:E47 |  |
| L12:L41 | Durational Rate Increase ( $\mathrm{DRI}_{\mathrm{x}}$ ) | From the appropriate cell of Current Market Assump 5 blocks!T19:T48 |  |

## Interblock Subsidy.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| O12:O41 | Reference Premium ( RefPrem $_{z}$ ) | $=\begin{array}{lr} \text { InitRefPrem, } \begin{array}{l} \text { RefPrem } \\ z-1 \end{array} *\left(1+\text { ActTrend }_{z-1}\right), & z=1 \\ & z=2,3,4, \ldots, 30 \end{array}$ |  |
| P12:P41 | Baseline Sales (BaseSales ${ }_{z}$ ) | From the appropriate cell of Current Market Assump 5 blocks!C19:G48, based on the block number and projection year |  |
| Q12:Q41 | Standard Lives Reference Claims (RefClaims $_{z(\text { stt }}$ ) | $=\begin{array}{llr} =\text { InitRefClaims }_{\text {st }} * \text { MorbAdj }_{b(s t)}, & z=1 \\ & \text { RefClaims }_{z-1(\mathrm{st})} *\left(1+\text { ActTrend }_{z-1}\right), & \mathrm{z}=2,3,4, \ldots, 30 \end{array}$ <br> MorbAdjb(st) is from the appropriate cell of Current Market Assump 5 blocks!O4, Q4, S4, U4, and W4 |  |
| R12:R41 | Impaired Lives Reference Claims (RefClaims $_{z(i m)}$ ) | $\begin{array}{rlr} \hline= & \text { InitRefClaims }_{\text {im }} * \text { MorbAdj }_{\text {b(im) }}, & z=1 \\ & \text { RefClaims }_{z-1(\mathrm{im})} *\left(1+\text { ActTrend }_{z-1}\right), & \mathrm{z}=2,3,4, \ldots, 30 \end{array}$ <br> MorbAdj $_{\mathrm{b}(\mathrm{im})}$ is from the appropriate cell of Current Market Assump 5 blocks!P4, R4, T4, V4, and X4 |  |
| S12:S41 | Actual Trend (ActTrend ${ }_{z}$ ) | From the appropriate cell of Global Assumptions!B106:B135 |  |
| T13:T41 | Implemented Rate Increase for New Business (ImpRateIncNew ${ }_{z}$ ) | $=\min \left(\text { MaxRateInc, RegDamp * ReqRateIncNew }{ }_{z}\right. \text { ), }$ <br> MaxRateInc is from Global Assumptions!D100 <br> RegDamp is from the appropriate cell of Global Assumptions!D90:D99, based on the value of ReqRateIncNew ${ }_{z}$ | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$. |

## Interblock Subsidy.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| U13:U41 | Implemented Rate Increase for Renewal Business (ImpRateIncRen ${ }_{z}$ ) | = ImpRateIncNew ${ }_{\text {z }}$ | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$. |
| V12:V41 | Market New Business Rate (MarketRate ${ }_{z}$ ) | $\begin{array}{rlr} = & \mathrm{P}_{1(\mathrm{pr})}, & \mathrm{z}=1 \\ & \text { MarketRate }_{\mathrm{z}-1} *\left(1+\text { ActTrend }_{z-1}\right), \end{array} \quad \mathrm{z}=2,3,4, \ldots, 30$ <br> $\mathrm{P}_{1(\mathrm{pr})}$ is from Current Market Assump 5 blocks!V19 |  |
| W12:W41 | Company New Business Rate (ComNewBusnRate ${ }_{z}$ ) | $\left.=\quad \begin{array}{ll}0, & \mathrm{z}<\text { IntroYr }_{\mathrm{b}} \\ \text { MarketRate }_{\mathrm{z}} *(1-\text { Disc@Intro }), & \mathrm{z}=\text { IntroYr }_{\mathrm{b}} \\ \text { ComNewBusnRate }_{\mathrm{z}-1} *(1+\operatorname{ImpRateIncNew} \\ \mathrm{z}\end{array}\right), \quad \mathrm{z}>$ IntroYr $_{\mathrm{b}} \mathrm{l}$ <br> Intro $\mathrm{Yr}_{\mathrm{b}}$ is from the appropriate cell of Current Market Assump 5 blocks!D11:D15 <br> Disc@Intro is from Global Assumptions!D26 |  |

## Interblock Subsidy.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| X13:X41 | Requested Rate Increase for New Business (ReqRateIncNew ${ }_{z}$ ) | otherwise <br> GlobalReqRateIncNew ${ }_{z}$ is from the appropriate cell of Current Market Summary 5 blocks!X13:X41 <br> PoolingYr is from Current Market Assump 5 blocks!E3 <br> Intro $\mathrm{Yr}_{\mathrm{b}}$ is from the appropriate cell of Current Market Assump 5 blocks!D11:D15 <br> ExpectedLR ${ }_{\mathrm{L}-2}$ is from the appropriate cell of CM-b_TLR!U19:U48, where $b$ is the block number <br> MaxLR is from Current Market Assump 5 blocks!M5 | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$. |
| Y13:Y41 | Requested Rate Increase for Renewal Business (ReqRateIncRen ${ }_{z}$ ) | $=$ ReqRateIncNew $_{z}$, $\mathrm{z}<$ PoolingYr <br> GlobalReqRateIncRen $_{z}$, $\mathrm{z} \geq$ PoolingYr <br> PoolingYr is from Current Market Assump 5 blocks!E3 <br> GlobalReqRateIncRen $_{z}$ is from the appropriate cell of Current Market Summary 5 blocks!Y13:Y41 | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$. |

## Interblock Subsidy.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AB12:AU41 | New Business Sales by Cohort (NewSales ${ }_{\text {z, }}$ ) | MktPriceSens is from Global Assumptions!D14 <br> ComPriceSens is from Global Assumptions!D15 |  |
| AB42:AU42 | Total New Business Sales for Issue Year y | $=\sum_{z=1}^{30} \text { NewSales }_{z, y}$ |  |

## Interblock Subsidy.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AX12:BQ41 | Actual Lapse Rates for Standard Lives by Cohort $\left(\mathrm{q}_{z \mathrm{y}, \mathrm{st})}\right)$ | 0 , $\mathrm{x} \leq 1 \text { or } \text { BaseSales }_{\mathrm{y}}=0$ <br> $\max \left\{\mathrm{q}_{\min (\mathrm{st}),}, \min \left[\mathrm{q}_{\max (\mathrm{st})}\right.\right.$, Baseq $_{\mathrm{x}-1(\mathrm{st})}+\left(\left(\right.\right.$ AgeAdjPremRate $\mathrm{e}_{\mathrm{z}, \mathrm{y}}$ <br> / AgeAdjPremRate $\mathrm{z}_{\mathrm{z}-1, \mathrm{y}}$ ) - 1 - ActTrend $_{\mathrm{z}}$ ) * LapseAdjTrend $_{\mathrm{st}}$ <br> * (((AgeAdjPremRate ${ }_{\text {z,y }} /$ AgeAdjMktNewBusnRate $\left.\left._{\text {z,y }}\right)-1\right)$ <br> $=\quad *$ LapseAdjMkt $\left._{s t}+1\right)-\left(\left(\left(\right.\right.\right.$ ComNewBusnRate $_{\mathrm{y}} /$ RefPrem $\left._{\mathrm{y}}\right)$ <br> $-1) *$ LapseAdjSale $\left.\left.\left._{s t}\right)\right]\right\}, \quad x=2,3$, or 4 and BaseSales $_{y} \neq 0$ <br> $\max \left\{\mathrm{q}_{\min (\mathrm{st}),}, \min \left[\mathrm{q}_{\max (\mathrm{st})}\right.\right.$, Baseq $_{\mathrm{x}-1(\mathrm{st})}+\left(\left(\right.\right.$ AgeAdjPremRate $\mathrm{Z}_{\mathrm{z}, \mathrm{y}}$ <br> / AgeAdjPremRate ${ }_{z-1, y}$ ) - 1 - ActTrend $_{z}$ ) LapseAdjTrend $_{\text {st }}$ <br> * (((AgeAdjPremRate $\mathrm{z}_{\mathrm{z}, \mathrm{y}}$ / AgeAdjMktNewBusnRate $\left.{ }_{z, \mathrm{y}}\right)$ - 1) <br> * LapseAdjMkt $\left.\left.\left._{\text {st }}+1\right)\right]\right\}$, <br> $\mathrm{q}_{\text {min(st) }}$ is from Global Assumptions!D40 <br> $\mathrm{q}_{\max (5 t)}$ is from Global Assumptions!D39 <br> AgingTrend is from Global Assumptions!C22 <br> LapseAdjTrend $_{\text {st }}$ is from Global Assumptions!D36 <br> LapseAdjMkt $_{\text {st }}$ is from Global Assumptions!D37 <br> LapseAdjSale $_{\text {st }}$ is from Global Assumptions!D38 |  |
| BT12:CM41 | Newly Impaired Lives by Cohort (NewImpLives $_{\text {z,y }}$ ) | $\begin{array}{lll} =0, & x \leq 1 \\ \mathrm{l}_{\text {z-1,y(st) }} * \mu_{\mathrm{x}-1} *\left(1-\mathrm{q}_{\mathrm{z}, \mathrm{y}(\mathrm{~m})}\right), & \mathrm{x}>1 \end{array}$ |  |
| BT42:CM42 | Total Number of Newly Impaired Lives for Issue Year y | $=\sum_{z=1}^{30} \text { NewImpLives }_{z, y}$ |  |

## Interblock Subsidy.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AB51:AU80 | Enrollment of Standard Lives by Cohort $\left(l_{z, y(s t)}\right)$ | $=\begin{array}{lll} 0, & x<1 \\ \text { NewSales }_{z, y}, & x=1 \\ \text { NewSales }_{z, y}+l_{z-1, y(s t)} *\left(1-\mu_{x-1}\right) *\left(1-q_{z, y(s t)}\right), & x>1 \end{array}$ |  |
| AB81:AU81 | Total Enrollment of Standard Lives by Issue Year | $=\sum_{z=1}^{30} l_{z, y(s t)}$ |  |
| AX51:BQ80 | Actual Lapse Rates for Impaired Lives by Cohort ( $\mathrm{q}_{\mathrm{z}, \mathrm{y}(\mathrm{im})}$ ) |  |  |
| BT51:CM80 | Actual Combined Lapse Rates by Cohort ( $\mathrm{q}_{\mathrm{z}, \mathrm{y}}$ ) | $=\begin{array}{ll} 0, & l_{z, y(s t)}+l_{z, y(i m)}=0 \\ & {\left[\left(l_{z, y(s t)} * q_{z, y(s t)}\right)+\left(l_{z, y(i m)} * q_{z, y(i m)}\right)\right] /\left(l_{z, y(s t)}+l_{z, y(i m)}\right),} \\ \text { otherwise } \end{array}$ |  |
| AB89:AU118 | Enrollment of Impaired Lives by Cohort $\left(l_{z, y(\text { im })}\right)$ | $\begin{array}{lll} = & 0, & \mathrm{x} \leq 1 \\ & \text { NewImpLives }_{\mathrm{z}, \mathrm{y}}+\left[1_{\mathrm{z}-1, \mathrm{y}(\mathrm{im})} *\left(1-\mathrm{q}_{\mathrm{z}, \mathrm{y}(\mathrm{im})}\right)\right], & \mathrm{x}>1 \end{array}$ |  |

## Interblock Subsidy.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AB119:AU119 | Total Enrollment of Impaired Lives by Issue Year | $=\sum_{z=1}^{30} l_{z, y(i m)}$ |  |
| AX89:BQ118 | Premium Rates after Durational Adjustment but Before Age Adjustment, by Cohort (DurAdjPremRate ${ }_{\mathrm{z}, \mathrm{y}}$ ) | $=\begin{array}{ll} 0, & \mathrm{x}<1 \\ \text { ComNewBusnRate }_{\mathrm{z}}, & \mathrm{x}=1 \\ \text { DurAdjPremRate }_{\mathrm{z}-\mathrm{t}, \mathrm{y}} *\left(1+\text { ImpRateIncRen }_{\mathrm{z}}\right) *\left(1+\text { DRI }_{\mathrm{x}}\right), & \mathrm{x}>1 \end{array}$ |  |
| BT89:CM118 | Premium Rates After Age <br> Adjustment by Cohort <br> (AgeAdjPremRate ${ }_{\text {B, }}$ ) | $=$ DurAdjPremRate $_{\text {z,y }} *$ PAF $_{\text {x }}$ |  |
| AB126:AU155 | Age-Adjusted Market-Level New Business Premium Rates by Cohort (AgeAdjMktNew BusnRate $_{z, y}$ ) | $=$0, $x<1$ <br>  MarketRate $_{z} *$ PAF $_{x}$, |  |

## Interblock Subsidy.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AX126:BQ155 | Standard Lives Claim Levels by Cohort ( $\mathrm{C}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}$ ) |  |  |
| BT126:CM155 | Impaired Lives Claim Levels by Cohort $\left(C_{z, y(i m)}\right)$ | $=\begin{array}{ll} 0, & x<1 \\ \text { RefClaims }_{z(\mathrm{im})}, & x=1 \\ \mathrm{C}_{\mathrm{z}-1, \mathrm{y}(\mathrm{im})} *\left(1+\text { ActTrend }_{z-1}\right) *(1+\text { AgingTrend }), & x>1 \end{array}$ <br> AgingTrend is from Global Assumptions!C22 |  |
| AB164:AU193 | Standard Lives Expense Levels by Cohort $\left(\operatorname{Exp}_{z, y(s t)}\right)$ | Inflation is from Global Assumptions!B64 |  |

## Interblock Subsidy.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AX164:BQ193 | Impaired Lives Expense Levels by Cohort $\left(\operatorname{Exp}_{z, y(i m)}\right)$ | Inflation is from Global Assumptions!B64 |  |
| BT164:CM193 | Average Expense Levels by Cohort $\left(\operatorname{Exp}_{z, y}\right)$ | $\begin{aligned} & 0, \quad l_{z, y(s t)}+l_{z, y(\mathrm{~m})} \leq 0 \\ & =\quad\left[\left(l_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \operatorname{Exp}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}\right)+\left(\mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{~mm})} * \operatorname{Exp}_{\mathrm{z}, \mathrm{y}(\mathrm{im})}\right)\right] /\left(l_{\mathrm{z}, \mathrm{y}(\mathrm{st})}+\mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{~m})}\right), \end{aligned}$ <br> otherwise |  |
| CP164:CP193 | Standard Lives Enrollment by Projection Year $\left(l_{\mathcal{z}(\mathrm{st})}\right)$ | $=\sum_{\mathrm{y}=1}^{20} \mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}$ |  |
| CP194 | Total Standard Lives Exposure | $=\sum_{z=1}^{30} l_{z(s t)}$ | "Total" refers to the sum over all 30 projection years. |
| CQ164:CQ193 | Standard Lives Premium by Projection Year $\left(\mathrm{P}_{\mathrm{z}(\mathrm{st})}\right)$ | $=\sum_{\mathrm{y}=1}^{20} \mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \text { AgeAdjPremRate } \mathrm{z}_{\mathrm{z}, \mathrm{y}} * 12$ |  |

## Interblock Subsidy.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| CQ194 | Total Standard Lives Premium $\left(\mathrm{P}_{\mathrm{st}}\right)$ | $=\sum_{z=1}^{30} P_{z(s t)}$ |  |  |
| CR164:CR193 | Standard Lives Claims by Projection Year $\left(\mathrm{C}_{\mathrm{z}(\mathrm{st})}\right)$ | $=\sum_{\mathrm{y}=1}^{20} \mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \mathrm{C}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * 12$ |  |  |
| CR194 | Total Standard Lives Claims (Cst) | $=\sum_{\mathrm{z}=1}^{30} \mathrm{C}_{\mathrm{z}(\mathrm{st})}$ |  |  |
| CS164:CS193 | Standard Lives Loss Ratio by Projection Year | $\begin{aligned} &= 0, \\ & \mathrm{C}_{\mathrm{z}(\mathrm{st})} / \mathrm{P}_{\mathrm{z}(\mathrm{st})}, \end{aligned}$ | $\begin{aligned} & \mathrm{P}_{\mathrm{Z}(\mathrm{st})}=0 \\ & \mathrm{P}_{\mathrm{Z}(\mathrm{st})} \neq 0 \end{aligned}$ |  |
| CS194 | Standard Lives Loss Ratio | $=\mathrm{C}_{\text {st }} / \mathrm{P}_{\mathrm{st}}$ |  |  |
| CV164:CV193 | Impaired Lives Enrollment by Projection Year $\left(l_{z(i m)}\right)$ | $=\sum_{\mathrm{y}=1}^{20} l_{z, \mathrm{y}(\mathrm{im})}$ |  |  |
| CV194 | Total Impaired Lives Exposure | $=\sum_{\mathrm{z}=1}^{30} \mathrm{l}_{\mathrm{z}(\mathrm{im})}$ |  |  |

## Interblock Subsidy.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| CW164:CW193 | Impaired Lives Premium by Projection Year ( $\left.\mathrm{P}_{\mathrm{z}(\mathrm{im})}\right)$ | $=\sum_{\mathrm{y}=1}^{20} \mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{im})} * \text { AgeAdjPremRate }_{\mathrm{z}, \mathrm{y}} * 12$ |  |  |
| CW194 | Total Impaired Lives Premium $\left(\mathrm{P}_{\mathrm{im}}\right)$ | $=\sum_{\mathrm{z}=1}^{30} \mathrm{P}_{\mathrm{z}(\mathrm{im})}$ |  |  |
| CX164:CX193 | Impaired Lives Claims by Projection Year ( $\mathrm{C}_{\mathrm{z} \text { (im) }}$ ) | $=\sum_{y=1}^{20} l_{z, y(i m)} * C_{z, y(i m)} * 12$ |  |  |
| CX194 | Total Impaired Lives Claims ( $\mathrm{C}_{\mathrm{im}}$ ) | $=\sum_{z=1}^{30} \mathrm{C}_{\mathrm{z}(\mathrm{im})}$ |  |  |
| CY165:CY193 | Impaired Lives Loss Ratio by Projection Year | $\begin{array}{ll} =\quad 0, \\ & C_{\mathrm{Z}(\mathrm{im})} / \mathrm{P}_{\mathrm{Z}(\mathrm{im})} \end{array}$ | $\begin{aligned} & \mathrm{P}_{\mathrm{z}(\mathrm{im})}=0 \\ & \mathrm{P}_{\mathrm{z}(\mathrm{im})} \neq 0 \end{aligned}$ | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$. |
| CY194 | Impaired Lives Loss Ratio | $=\mathrm{Cim}_{\mathrm{im}} / \mathrm{P}_{\mathrm{im}}$ |  |  |
| DA164:DA193 | Combined Enrollment by Projection Year $\left(\mathrm{l}_{\mathrm{z}}\right)$ | $=l_{z(\text { st) }}+l_{z(\text { (im) }}$ |  | "Combined" refers to the combination of standard and impaired. |

## Interblock Subsidy.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| DA194 | Total Combined Exposure (l) | $=\sum_{z=1}^{30} l_{z}$ |  |  |
| DB164:DB193 | Combined Premium by Projection Year $\left(\mathrm{P}_{\mathrm{z}}\right)$ | $=\mathrm{P}_{\mathrm{z}(\mathrm{st})}+\mathrm{P}_{\mathrm{z}(\mathrm{im})}$ |  |  |
| DB194 | Total Combined Premium (P) | $=\sum_{\mathrm{z}=1}^{30} \mathrm{P}_{\mathrm{z}}$ |  |  |
| DC164:DC193 | Combined Premium PMPM by Projection Year | $\begin{array}{ll} = & 0, \\ & P_{z} / l_{z} / 12, \end{array}$ | $\mathrm{l}_{\mathrm{z}}=0$ <br> otherwise |  |
| DD164:DD193 | Combined Claims by Projection Year (C $\mathrm{C}_{\mathrm{z}}$ ) | $=\mathrm{C}_{\mathrm{z}(\mathrm{st})}+\mathrm{C}_{\mathrm{z} \text { (im) }}$ |  |  |
| DD194 | Total Combined Claims (C) | $=\sum_{z=1}^{30} C_{z}$ |  |  |
| DE164:DE193 | Combined Claims PMPM by Projection Year | $\begin{array}{ll} =\quad 0, \\ & C_{z} / l_{z} / 12, \end{array}$ | $\begin{array}{r} \mathrm{l}_{\mathrm{z}}=0 \\ \text { othise } \end{array}$ |  |

## Interblock Subsidy.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DE194 | Total Combined Claims PMPM | $=$  $\mathrm{l}=0$ <br>  $\mathrm{C} / \mathrm{l} / 12$, otherwise |  |
| DF164:DF193 | Combined Loss Ratio by Projection Year <br> (ActualLR ${ }_{z}$ ) | $\begin{array}{lrr} =0, & P_{z}=0 \\ C_{z} / P_{z}, & \text { otherwise } \end{array}$ |  |
| DF194 | Total Combined Loss Ratio | $\begin{array}{llr} \hline= & 0, & \mathrm{P}=0 \\ \mathrm{C} / \mathrm{P}, & \text { otherwise } \end{array}$ |  |
| DG164:DG193 | Combined Expected Loss Ratio by Projection Year (ExpectedLR ${ }_{z}$ ) | From the appropriate cell of CM-b_TLR!U19:U48, based on projection year, where $b$ is the block number |  |
| DH164:DH193 | Actual-to-Expected Combined Loss Ratio by Projection Year | $\begin{array}{llr} = & 0, & \mathrm{P}_{\mathrm{z}}=0 \\ & \text { ActualLR }_{\mathrm{z}} / \text { ExpectedLR }_{\mathrm{z}}, & \text { otherwise } \end{array}$ |  |
| DI164:DI193 | Rolling Two-Year Combined Loss Ratio by Projection Year | $\begin{array}{lrr} C_{z} / P_{z}, & z=1 \\ & \left(C_{z-1}+C_{z}\right) /\left(P_{z-1}+P_{z}\right), & z=2,3,4, \ldots, 30 \end{array}$ |  |
| DJ164:DJ193 | Combined Premium Less Claims by Projection Year (PminusC ${ }_{z}$ ) | $=\mathrm{P}_{\mathrm{z}}-\mathrm{C}_{\mathrm{z}}$ |  |

## Interblock Subsidy.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| DJ194 | Total Combined Premium Less Claims | = $\mathrm{P}-\mathrm{C}$ |  |  |
| DK164:DK193 | Combined Expenses by Projection Year $\left(\operatorname{Exp}_{z}\right)$ | $=12 *\left[\sum_{\mathrm{y}=1}^{20}\left(\mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \operatorname{Exp}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}\right)+\sum_{\mathrm{y}=1}^{20}\left(\mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{im})} * \operatorname{Exp}_{\mathrm{z}, \mathrm{y}(\mathrm{im})}\right)\right]$ |  |  |
| DK194 | Total Combined Expenses (Exp) | $=\sum_{\mathrm{z}=1}^{30} \operatorname{Exp}_{\mathrm{z}}$ |  |  |
| DL164:DL193 | Combined Expense Ratio by Projection Year | $\begin{aligned} = & 0, \\ & \operatorname{Exp}_{z} / P_{z}, \end{aligned}$ | $\mathrm{P}_{\mathrm{z}}=0$ <br> otherwise |  |
| DL194 | Total Combined Expense Ratio | $\begin{aligned} &=\quad 0, \\ & \operatorname{Exp} / P, \end{aligned}$ | $\mathrm{P}=0$ <br> otherwise |  |
| DM164:DM193 | Combined Gain by Projection Year (Gain ${ }_{z}$ ) | $=\mathrm{P}_{\mathrm{z}}-\mathrm{C}_{\mathrm{z}}-\operatorname{Exp}_{\mathrm{z}}$ |  |  |
| DM194 | Total Combined Gain (Gain) | $=\sum_{\mathrm{z}=1}^{30} \operatorname{Gain}_{\mathrm{z}}$ |  |  |
| DN164:DN193 | Combined Gain as a Percentage of Combined Premium by Projection Year | $\begin{aligned} &= 0, \\ & \operatorname{Gain}_{\mathrm{z}} / P_{\mathrm{z}}, \end{aligned}$ | $\mathrm{P}_{\mathrm{z}}=0$ <br> otherwise |  |

## Interblock Subsidy.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| DN194 | Total Combined Gain as a Percentage of Combined Premium | $\begin{aligned} = & 0, \\ & \text { Gain } / P, \end{aligned}$ | $\mathrm{P}=0$ <br> otherwise |  |
| DO164:DO193 | Risk-Based Capital by Projection Year $\left(\mathrm{RBC}_{\mathrm{z}}\right)$ | $=\mathrm{P}_{\mathrm{z}} * \mathrm{RBC} \%$ <br> RBC\% is from Global Assumptions!D83 |  | Uses a predefined percentage of premium as a proxy for riskbased capital requirement. |
| DP164:DP193 | Opportunity Cost of Capital by Projection Year ( $\mathrm{OCC}_{\mathrm{z}}$ ) | $=-\mathrm{RBC}_{\mathrm{z}} * \mathrm{OCC} \%$ <br> OCC\% is from Global Assumptions!D84 |  |  |
| DP194 | Total Opportunity Cost of Capital | $=\sum_{\mathrm{z}=1}^{30} \mathrm{OCC}_{\mathrm{z}}$ |  |  |
| DQ164:DQ193 | Economic Gain by Projection Year (EconGain ${ }_{z}$ ) | $=\mathrm{Gain}_{\mathrm{z}}+\mathrm{OCC}_{\mathrm{z}}$ |  |  |
| DQ194 | Total Economic Gain | $=\sum_{z=1}^{30} \text { EconGain }_{\mathrm{z}}$ |  |  |

## Interblock Subsidy.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DR164:DR193 | Market New Business Rate | $=$ MarketRate $_{\text {z }}$ | The values in cells DR164:DV193 are duplicate copies of values calculated elsewhere; they are repeated here for convenience. |
| DS164:DS193 | Company New Business Rate | $=$ ComNewBusnRate $_{\text {z }}$ |  |
| DT164:DT193 | Implemented Rate Increase for New Business | $=$ ImpRateIncNew $_{\text {z }}$ |  |
| DT194 | Average Rate Increase | $=\sum_{\mathrm{z}=\mathrm{Intro} \mathrm{Yr}(\mathrm{~b})+1}^{30} \operatorname{ImpRateIncNew}_{\mathrm{z}} /\left(30-\text { IntroYr }_{\mathrm{b}}\right)$ <br> Intro $\mathrm{Yr}_{\mathrm{b}}$ is from the appropriate cell of Current Market Assump 5 blocks!D11:D15 |  |
| DT195 | Minimum Rate Increase | $=\min \left(\right.$ IncRateIncNew $\left._{z}\right)$, where the minimum is taken over $\mathrm{z}=\text { Intro } \mathrm{Yr}_{\mathrm{b}}+1, \text { Intro } \mathrm{Yr}_{\mathrm{b}}+2, \text { Intro } \mathrm{Yr}_{\mathrm{b}}+3, \ldots, 30$ <br> Intro $\mathrm{Yr}_{\mathrm{b}}$ is from the appropriate cell of Current Market Assump 5 blocks!D11:D15 |  |

## Interblock Subsidy.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DT196 | Maximum Rate Increase | $=\max \left(\operatorname{IncRateIncNew}{ }_{z}\right)$, where the maximum is taken over $\mathrm{z}=\text { Intro }_{\mathrm{Yr}}^{\mathrm{b}} \text { }+1, \text { Intro } \mathrm{Yr}_{\mathrm{b}}+2, \text { Intro } \mathrm{Yr}_{\mathrm{b}}+3, \ldots, 30$ <br> Intro $\mathrm{Yr}_{\mathrm{b}}$ is from the appropriate cell of Current Market Assump 5 blocks!D11:D15 |  |
| DU164:DU193 | Implemented Rate Increase for Renewal Business | $=$ ImpRateIncRen $_{\text {z }}$ |  |
| DV164:DV183 | Aggregate Actual Sales by Projection Year (ActualSales ${ }_{z}$ ) | $=$ AggSales $_{\text {z,z }}$ | Formula applies only for $\mathrm{z}=1,2,3, \ldots, 20$. |
| DB197 | Present Value of Combined Premium <br> (PVPremium) | $=\mathrm{NPV}_{\text {int }}\left(\mathrm{P}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ | All present values in this section are taken over all 30 projection years, and int is from Global Assumptions!B63. |
| DD197 | Present Value of Combined Claims (PVClaims) | $=\mathrm{NPV}_{\text {int }}\left(\mathrm{C}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DJ197 | Present Value of Combined Premium Less Combined Claims (PVPminusC) | $=\mathrm{NPV}_{\text {int }}\left(\right.$ PminusC $\left.\mathrm{C}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |

## Interblock Subsidy.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula |  |
| :--- | :--- | :--- | :--- |
| DK197 | Present Value of Combined <br> Expenses <br> (PVExp) | $=\mathrm{NPV}_{\mathrm{int}}\left(\operatorname{Exp}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ | Comments |
| DM197 | Present Value of Combined <br> Gain <br> (PVGain) | $=\mathrm{NPV}_{\mathrm{int}}\left(\mathrm{Gain}_{z}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DP197 | Present Value of <br> Opportunity Cost of Capital <br> (PVOCC) | $=\mathrm{NPV}_{\mathrm{int}}\left(\mathrm{OCC}_{z}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DQ197 | Present Value of Economic <br> Gain <br> (PVEconGain) | $=\mathrm{NPV}_{\mathrm{int}}\left(\right.$ EconGain $\left._{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DB198 | Present Value of Combined <br> Premium as a Percentage of <br> Present Value of Combined <br> Premium | $=\mathrm{PVPremium} \mathrm{/} \mathrm{PVPremium}$ | Identically equal to |

## Interblock Subsidy.xls - CM-1, CM-2, CM-3, CM-4, CM-5

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| DJ198 | Present Value of Combined <br> Premium Less Combined <br> Claims as a Percentage of <br> Present Value of Combined <br> Premium | $=$ PVPminusC / PVPremium |  |
| DK198 | Present Value of Combined <br> Expenses as a Percentage of <br> Present Value of Combined <br> Premium | $=$ PVExp / PVPremium |  |
| DM198 | Present Value of Combined <br> Gain as a Percentage of <br> Present Value of Combined <br> Premium | $=$ PVGain / PVPremium |  |
| DP198 | Present Value of <br> Opportunity Cost of Capital <br> as a Percentage of Present <br> Value of Combined <br> Premium | $=$ PVOCC / PVPremium |  |
| DQ198 | Present Value of Economic <br> Gain as a Percentage of <br> Present Value of Combined <br> Premium | $=$ PVEconGain / PVPremium |  |

## Interblock Subsidy.xls - IBS Assump CY pooling

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| E3 | Year at which Pooling Begins <br> (PoolingYr) | $=31$ |  | Hardcoded value; value of 31 indicates no pooling. |
| D11:D15 | Year of Introduction by Block (Intro $\mathrm{Yr}_{\mathrm{b}}$ ) | $\begin{array}{r} 1, \\ =\begin{array}{l} 1, \\ 7, \\ 10 \\ 13, \end{array}, ~ \end{array}$ | $\begin{aligned} & \mathrm{b}=1 \\ & \mathrm{~b}=2 \\ & \mathrm{~b}=3 \\ & \mathrm{~b}=4 \\ & \mathrm{~b}=5 \end{aligned}$ | Hardcoded values |
| L4 | Target Lifetime Loss Ratio (TargetLR) | = 65.00\% |  | Hardcoded value |
| M5 | Maximum Allowable Loss Ratio <br> (MaxLR) | From Current Market Assump 5 blocks!M5 |  |  |
| L7 | Flag to Include Trend (TrendFlag) | $=1$ |  | Hardcoded value; value of 1 means to include trend in projections, value of 0 means to exclude trend. |
| L11 | Initial Reference Claim Cost for Standard Lives (InitRefClaims ${ }_{\mathrm{st}}$ ) | From Global Assumptions!D49 |  | Best estimate of starting claim costs for standard lives |

## Interblock Subsidy.xls - IBS Assump CY pooling

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| N11 | Pricing Assumption of Initial Reference Claim Cost for Standard Lives (InitRefClaims ${ }_{\text {st(prr) }}$ ) | = InitRefClaims ${ }_{\text {st }}$ | Standard lives starting claim costs used in initial pricing; the model provides the flexibility to adjust the baseline claims for use in pricing, but the model currently does not make any such adjustment. |
| L12 | Initial Reference Claim Cost for Impaired Lives (InitRefClaims ${ }_{i m}$ ) | From Global Assumptions!D60 | Best estimate of starting claim costs for impaired lives |
| N12 | Pricing Assumption of Initial Reference Claim Cost for Impaired Lives (InitRefClaims ${ }_{\text {im(pr) }}$ ) | $=$ InitRefClaims $_{\text {im }}$ | Impaired lives starting claim costs used in initial pricing; the model provides the flexibility to adjust the baseline claims for use in pricing, but the model currently does not make any such adjustment. |

## Interblock Subsidy.xls - IBS Assump CY pooling

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| M14 | Durational Deterioration Limitation Period (DDLP) | = 5 | Hardcoded value; period during which the probability of a standard life becoming impaired is assumed to be greater than zero for pricing purposes |
| M15 | Expected Premium Rate (ExpPrem) | From Current Market Assump 5 blocks!M15 |  |
| $\begin{aligned} & \text { O4, Q4, S4, U4, } \\ & \text { W4 } \end{aligned}$ | Standard Lives Morbidity Adjustment Factors by Block (MorbAdjb $_{\text {bst }}$ ) | From the appropriate cell of Current Market Assump 5 blocks!O4, Q4, S4, U4, and W4 |  |
| $\begin{aligned} & \text { P4, R4, T4, V4, } \\ & \text { X4 } \end{aligned}$ | Impaired Lives Morbidity Adjustment Factors by Block (MorbAdjb ${ }_{b i m}$ ) | From the appropriate cell of Current Market Assump 5 blocks!P4, R4, T4, V4, and X4 |  |
| R6:R10 | Durational Rate Increase ( $\mathrm{DRI}_{\mathrm{x}}$ ) | Renewal $1(x=2):$ $5 \%$ <br> Renewal $2(x=3):$ $5 \%$ <br> Renewal $3(x=4)$ : $5 \%$ <br> Renewal $4(x=5):$ $5 \%$ <br> Renewals 5-29 $(x=6,7,8, \ldots, 30):$ $0 \%$ | Hardcoded values; represents the additional rate increase needed each year due to anticipated wearoff of underwriting |

## Interblock Subsidy.xls - IBS Assump CY pooling

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| B19:B48 | Global Baseline Sales by Projection Year (GlobalBaseSales ${ }_{z}$ ) | From the appropriate cell of Global Assumptions!O15:O44 |  |
| C19:G48 | Baseline Sales by Projection Year by Block (BaseSales ${ }_{z, b}$ ) | From the appropriate cell of Global Assumptions !P15:T44 |  |
| J19:J48 | Standard Lives Base Lapse Rates Used in Pricing $\left(\mathrm{q}_{\mathrm{x}(\mathrm{st}, \mathrm{pr})}\right)$ | $\begin{aligned} & =\max \left\{\mathrm{q}_{\min (\mathrm{st})}, \min \left[\mathrm{q}_{\max (\mathrm{st})}, \operatorname{Baseq}_{\mathrm{x}(\mathrm{st})}+\left(\left(\left(\mathrm{PAF}_{\mathrm{x}+1} / \operatorname{PAF}_{\mathrm{x}} * \text { AccumDRI }_{\mathrm{x}+1}\right.\right.\right.\right.\right. \\ & \left.\left.\left./ \text { AccumDRI }_{\mathrm{x}}\right)-1\right) * \text { LapseAdjTrend }_{\mathrm{st}}\right)+\left(\left(\text { AccumDRI }_{\mathrm{x}+1}-1\right) *\right. \\ & \text { LapseAdjMkt } \left.\left.\left._{\mathrm{st}}\right)\right]\right\} \end{aligned}$ <br> $\mathrm{q}_{\min (s t)}$ is from Global Assumptions!D40 <br> $\mathrm{q}_{\max (s t)}$ is from Global Assumptions!D39 <br> Baseq $_{\mathrm{x}(\mathrm{st}, \mathrm{pr})}$ is from the appropriate cell of Global Assumptions!E29:E33 <br> LapseAdjTrend $_{\text {st }}$ is from Global Assumptions!D36 <br> LapseAdjMk $_{\text {st }}$ is from Global Assumptions!D37 | Baseline standard lives lapse rates adjusted to reflect higher anticipated lapses due to rate increases exceeding claim trend and renewal rates exceeding the market new business rate |

## Interblock Subsidy.xls - IBS Assump CY pooling

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| K19:K48 | Impaired Lives Base Lapse Rates Used in Pricing $\left(\mathrm{q}_{\mathrm{x}(\mathrm{im}, \mathrm{pr})}\right)$ |  | Baseline impaired lives lapse rates adjusted to reflect higher anticipated lapses due to rate increases exceeding claim trend during durational deterioration limitation period; beyond DDLP, impaired lives lapse rates are equal to standard lives lapse rates. |
| L19:L48 | Rate of Impairment Used in Pricing $\left(\mu_{\mathrm{x}(\mathrm{pr})}\right)$ | $\begin{array}{ll} \hline=0, & x>\operatorname{DDLP} \\ \mu_{\mathrm{x}}, & x \leq \text { DDLP } \end{array}$ <br> $\mu_{\mathrm{x}}$ is from the appropriate cell of Global Assumptions!E43:E47 |  |
| M19:M48 | Number of Standard Lives $\left(\mathrm{l}_{\mathrm{x}(\mathrm{st})}\right)$ | $\begin{array}{llr} \hline= & 1, & x=1 \\ & l_{\text {x-1(st) }} *\left(1-\mu_{\mathrm{x}-1(\mathrm{pr})}\right) *\left(1-\mathrm{q}_{\mathrm{x}-1(\mathrm{st}, \mathrm{pr})}\right), & \mathrm{x}=2,3,4, \ldots, 30 \end{array}$ | The values in columns $\mathrm{M}, \mathrm{N}$, and O represent proportions of the number of first-year standard lives. |
| N19:N48 | Number of Impaired Lives $\left(l_{x(i m)}\right)$ | $\begin{array}{rlr} = & 0, & x=1 \\ & {\left[l_{\mathrm{x}-1 \mathrm{im})} *\left(1-\mathrm{q}_{\mathrm{x}-1(\mathrm{im}, \mathrm{pr})}\right)\right]+\left[\mathrm{l}_{\mathrm{x}-1(\mathrm{st})} * \mu_{\mathrm{x}-1(\mathrm{pr})}\right],} & \mathrm{x}=2,3,4, \ldots, 30 \end{array}$ |  |

## Interblock Subsidy.xls - IBS Assump CY pooling

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| O19:048 | Number of Total Lives $\left(l_{x}\right)$ | $=l_{\text {x(st) }}+l_{\text {x(im) }}$ |  |
| P19:P48 | Accumulated Trend (AccumTrend ${ }^{\text {x }}$ ) | $\begin{array}{llr} \hline= & 1, & x=1 \\ & \text { AccumTrend }{ }_{x-1} *[1+(\text { Trend } * \text { TrendFlag })], & x=2,3,4, \ldots, 30 \end{array}$ <br> Trend is from Global Assumptions!D21 |  |
| Q19:Q48 | Discount Factor $\left(v_{x}\right)$ | $\begin{array}{lr} 1, & x=1 \\ v_{x-1} /(1+\text { int }), & x=2,3,4, \ldots, 30 \end{array}$ |  |
| R19:R49 | Premium Age Factor $\left(\mathrm{PAF}_{\mathrm{x}}\right)$ | $\begin{array}{lr} 1, & x=1 \\ & \operatorname{PAF}_{x-1} *(1+\text { PremGrowthAge }), \end{array} \quad x=2,3,4, \ldots, 30$ <br> PremGrowthAge is from Global Assumptions!C25 |  |

## Interblock Subsidy.xls - IBS Assump CY pooling

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| S19:S48 | Pricing Claims ( $\mathrm{C}_{\mathrm{x}(\mathrm{pr})}$ ) | InitRefPrem is from Global Assumptions!C24 <br> MorbAdj ${ }_{s t}$ is from Global Assumptions!D51 <br> $\mathrm{DF}_{\mathrm{x}}$ is from the appropriate cell of IBS CY Pooling Summary!D12:D41 | Standard lives’ claims are adjusted each year for morbidity, duration (within the DDLP), aging, and trend. <br> Impaired lives’ claims are adjusted each year for aging and trend. |
| T19:T48 | Annual Durational Rate Increase $\left(\mathrm{ADRI}_{\mathrm{x}}\right)$ | $\begin{array}{lr} =0, & x=1 \\ \text { DRI }_{x}, & x=2,3,4, \ldots, 30 \end{array}$ |  |
| U19:U49 | Accumulated Durational Rate Increase Factor (AccumDRI ${ }_{x}$ ) | $\begin{array}{lr} 1, & x=1 \\ & \text { AccumDRI }_{x-1} *\left(1+\text { ADRI }_{x}\right), \end{array} \quad x=2,3,4, \ldots, 31$ | A $31^{\text {st }}$-year value is needed for the calculation of $\mathrm{q}_{30(\mathrm{st}, \mathrm{pr})}$. |

## Interblock Subsidy.xls - IBS Assump CY pooling

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| V19:V48 | Pricing Premium $\left(\mathrm{P}_{\mathrm{x}(\mathrm{pr})}\right)$ | $\mathrm{PAF}_{\mathrm{x}}$ is from the appropriate cell of Current Market Summary 5 blocks!J12:J41 | This formula should use the $\mathrm{PAF}_{\mathrm{x}}$ values calculated in this tab rather than pulling them from Current Market Summary 5 blocks. |
| W19:W48 | Pricing Loss Ratio $\left(\mathrm{LR}_{\mathrm{x}(\mathrm{pr})}\right)$ | $=\mathrm{C}_{\mathrm{x}(\mathrm{pr})} / \mathrm{P}_{\mathrm{x}(\mathrm{pr})}$ |  |

## Interblock Subsidy.xls - IBS Assump CY pooling

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| X19:X48 | Pricing Expenses $\left(\operatorname{Exp}_{x(p \mathrm{pr})}\right)$ | $\begin{array}{rl} =\mathrm{l}_{\mathrm{x}} & * \operatorname{Exppol}(\mathrm{x}) *(1+\operatorname{Inflation})^{\mathrm{x}-1} \\ & +\operatorname{Exp}_{\% \mathrm{C}(\mathrm{x})} * \mathrm{C}_{\mathrm{x}(\mathrm{pr})} \\ & +\operatorname{Comm}_{\mathrm{B}(\mathrm{x})} * \mathrm{P}_{1(\mathrm{pr})} / \mathrm{l}_{1} * \mathrm{l}_{\mathrm{x}} \\ & +\operatorname{Comm}_{\mathrm{R}(\mathrm{x})} *\left[\mathrm{P}_{\mathrm{x}(\mathrm{pr})}-\left(\mathrm{P}_{1(\mathrm{pr})} / \mathrm{l}_{1} * \mathrm{l}_{\mathrm{x}}\right)\right] \\ & +\operatorname{Expoth} \% \mathrm{P}(\mathrm{x}) * \mathrm{P}_{\mathrm{x}(\mathrm{pr})} \end{array}$ <br> Exppol(x) $^{(x)}$ is from the appropriate cell of IBS CY Pooling Summary!E12:E41 <br> Inflation is from Global Assumptions!B64 <br> Exp\%C(x) is from the appropriate cell of IBS CY Pooling Summary!F12:F41 <br> Comm $_{B(x)}$ is from the appropriate cell of IBS CY Pooling Summary!G12:G41 <br> Comm $_{R(x)}$ is from the appropriate cell of IBS CY Pooling Summary!H12:H41 <br> Expoth\%P(x) is from the appropriate cell of IBS CY Pooling Summary!I12:I41 |  |
| Y19:Y48 | Pricing Expense as a Percentage of Pricing Premium | $=\operatorname{Exp}_{\mathrm{x}(\mathrm{pr})} / \mathrm{P}_{\mathrm{x}(\mathrm{pr})}$ |  |
| Z19:Z48 | Pricing Operating Gain $\left(\right.$ Gain $\left._{\text {(pr) }}\right)$ | $=\mathrm{P}_{\mathrm{x}(\mathrm{pr})}-\mathrm{C}_{\mathrm{x}(\mathrm{pr})}-\operatorname{Exp}_{\mathrm{x}(\mathrm{pr})}$ |  |

## Interblock Subsidy.xls - IBS Assump CY pooling

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AA19:AA48 | Pricing Gain as a Percentage of Pricing Premium | $=\mathrm{Gain}_{\mathrm{x}(\mathrm{pr})} / \mathrm{P}_{\mathrm{x}(\mathrm{pr})}$ |  |
| S50 | Simple Sum of Pricing Claims (SumClaims) | $=\sum_{\mathrm{x}=1}^{30} \mathrm{C}_{\mathrm{x}(\mathrm{pr})}$ |  |
| V50 | Simple Sum of Pricing Premiums (SumPrem) | $=\sum_{\mathrm{x}=1}^{30} \mathrm{P}_{\mathrm{x}(\mathrm{pr})}$ |  |
| W50 | Pricing Loss Ratio, Using Simple Sums | = SumClaims / SumPrem |  |
| X50 | Simple Sum of Pricing Expenses (SumExp) | $=\sum_{\mathrm{x}=1}^{30} \operatorname{Exp}_{\mathrm{x}(\mathrm{pr})}$ |  |
| Y50 | Pricing Expense Ratio, Using Simple Sums | = SumExp / SumPrem |  |
| Z50 | Simple Sum of Pricing Gains (SumGain) | $=\sum_{x=1}^{30} \operatorname{Gain}_{x}$ |  |

## Interblock Subsidy.xls - IBS Assump CY pooling

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AA50 | Pricing Gain Ratio, Using Simple Sums | = SumGain / SumPrem |  |
| S51 | Present Value of Pricing Claims over 10 Years (PVClaims ${ }_{10}$ ) | $=\mathrm{NPV}_{\text {int }}\left(\mathrm{C}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}, \quad$ where NPV is taken over $\mathrm{x}=1,2,3, \ldots .10$ |  |
| V51 | Present Value of Pricing Premiums over 10 Years (PVPrem $_{10}$ ) | $=\operatorname{NPV}_{\text {int }}\left(\mathrm{P}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}, \quad$ where NPV is taken over $\mathrm{x}=1,2,3, \ldots .10$ |  |
| W51 | Pricing Loss Ratio, Using 10-Year NPVs | $=$ PVClaims $_{10} /$ PVPrem $_{10}$ |  |
| X51 | Present Value of Pricing Expenses over 10 Years ( PVExp $_{10}$ ) | $=N P V_{\text {int }}\left(\operatorname{Exp}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}$, where NPV is taken over $\mathrm{x}=1,2,3, \ldots .10$ |  |
| Y51 | Pricing Expense Ratio, Using 10-Year NPVs | $=$ PVExp $_{10} /$ PVPrem $_{10}$ |  |
| Z51 | Present Value of Pricing Gains over 10 Years (PVGain ${ }_{10}$ ) | $=\mathrm{NPV}_{\mathrm{int}}\left(\operatorname{Gain}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}$ <br> where NPV is taken over $\mathrm{x}=1,2,3, \ldots .10$ |  |
| AA51 | Pricing Gain Ratio, Using 10-Year NPVs | $=$ PVGain $_{10} /$ PVPrem $_{10}$ |  |

## Interblock Subsidy.xls - IBS Assump CY pooling

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| S52 | Present Value of Pricing Claims over 30 Years (PVClaims ${ }_{30}$ ) | $=\mathrm{NPV}_{\text {int }}\left(\mathrm{C}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}, \quad$ where NPV is taken over $\mathrm{x}=1,2,3, \ldots .30$ |  |
| V52 | Present Value of Pricing Premiums over 30 Years (PVPrem 30 ) | $=N P V_{\text {int }}\left(\mathrm{P}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}, \quad$ where NPV is taken over $\mathrm{x}=1,2,3, \ldots .30$ |  |
| W52 | Pricing Loss Ratio, Using 30-Year NPVs | $=$ PVClaims $_{30} /$ PVPrem $_{30}$ |  |
| X52 | Present Value of Pricing Expenses over 30 Years ( PVExp $_{30}$ ) | $=\operatorname{NPV}_{\text {int }}\left(\operatorname{Exp}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}$, where NPV is taken over $\mathrm{x}=1,2,3, \ldots .30$ |  |
| Y52 | Pricing Expense Ratio, Using 30-Year NPVs | $=$ PVExp $_{30} /$ PVPrem $_{30}$ |  |
| Z52 | Present Value of Gains over 30 Years $\left(\mathrm{PVGain}_{30}\right)$ | $=\mathrm{NPV}_{\mathrm{int}}\left(\mathrm{Gain}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}$ <br> where NPV is taken over $\mathrm{x}=1,2,3, \ldots .30$ |  |
| AA52 | Pricing Gain Ratio, Using 30-Year NPVs | $=$ PVGain $_{30} /$ PVPrem $_{30}$ |  |

## Interblock Subsidy.xls - IBS Assump CY pooling

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| S53 | PV of Pricing Claims as a Percentage of PV of Pricing Premium | $=$ PVClaims $_{30} /$ PVPrem $_{30}$ | Model calculations produce a stream of premiums such that this is equal to the target lifetime loss ratio. |
| V53 | PV of Pricing Premium as a Percentage of PV of Pricing Premium | $=$ PVPrem $_{30} /$ PVPrem $_{30}$ | Identically equal to 1.000 . |
| X53 | PV of Pricing Expenses as a Percentage of PV of Pricing Premium | $=$ PVExp $_{30} /$ PVPrem $_{30}$ |  |
| Z53 | PV of Pricing Gain as a Percentage of PV of Pricing Premium | $=\mathrm{PVGain}_{30} / \mathrm{PVPrem}_{30}$ |  |
| O54 | Interest <br> (int) | From Global Assumptions!B63 |  |
| AC19:AC48 | Loss Ratio by Projection Year <br> (ExpectedLR ${ }_{z}$ ) | See formula for cells AE51:BH51, below. |  |

## Interblock Subsidy.xls - IBS Assump CY pooling

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AE19:BH48 | Expected Premium Inforce at Age Adjusted Market New Business Rates, by Cohort <br> (ExpInforce $_{\mathrm{z}, \mathrm{x}}$ ) | $=\begin{aligned} & 0, \quad y<1 \text { or } \mathrm{y}>20 \\ & \text { AggAgeAdjMktNewBusnRate }_{\mathrm{z}, \mathrm{y}} *\left(\operatorname{Aggl}_{z, \mathrm{y}(\mathrm{st})}+\operatorname{Aggl}_{z, y(\mathrm{im})}\right), \end{aligned}$ <br> otherwise <br> AggAgeAdjMktNewBusnRate ${ }_{z, y}$ is from the appropriate cell of IBS CY Pooling Summary!BT89:CM118 <br> $\mathrm{Aggl}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}$ is from the appropriate cell of IBS CY Pooling <br> Summary!AB51:AU80 <br> $\operatorname{Aggl}_{z, y(\mathrm{im})}$ is from the appropriate cell of IBS CY Pooling <br> Summary!AB89:AU118 | Note that in this table, columns represent projection years, rows represent durations, and diagonals represent issue years. |
| AB51:BE51 | Composite Expected Loss Ratio by Projection Year | $=\begin{array}{ll} 0, & \sum_{\mathrm{x}=1}^{30} \mathrm{P}_{\mathrm{z}, \mathrm{x}}=0 \\ & \\ & \left(\sum_{\mathrm{i}=1}^{30} \text { ExpInforce }_{\mathrm{z}, \mathrm{i}} * \mathrm{LR}_{\mathrm{i}}\right) / \sum_{\mathrm{j}=1}^{30} \text { ExpInforce }_{\mathrm{z}, \mathrm{j},}, \end{array} \quad \text { otherwise }$ | Summations are over all positive durations for a given projection year. |
| AB52:BE52 | Total Expected Premium Inforce by Projection Year | $=\sum_{x=1}^{30} \text { ExpInforce }_{z, x, 1}$ |  |

## Interblock Subsidy.xls - IBS CY Pooling Summary

The IBS CY Pooling Summary tab is analogous to the Current Market Summary 5 blocks tab. Current Market Summary 5 blocks is the aggregation of results across the entire projection period for the scenario with no pooling; IBS CY Pooling Summary is the aggregation of results across the entire projection period for the scenario with calendar year pooling. Where Current Market Summary 5 blocks refers to values in the tab 'Current Market Assump 5 blocks', IBS CY Pooling Summary refers to the analogous values from the tab 'IBS Assump CY pooling'. Similarly, where Current Market Summary 5 blocks refers to values from the tabs 'CM-1', 'CM-2', etc., IBS CY Pooling Summary refers to the analogous values from the tabs 'IBS-1P', 'IBS-2P', etc.

It can be demonstrated that IBS CY Pooling Summary and Current Market Summary 5 blocks work similarly by setting the year at which pooling begins to 31 in 'IBS Assump CY pooling', which means that there is no pooling, and then comparing the results of Current Market Summary 5 blocks and IBS CY Pooling Summary.

IBS CY Pooling Summary includes a table of average premiums by projection year by block in cells DV164:DZ193. This table does not appear in the Current Market Summary 5 blocks tab. It appears in the IBS CY Pooling Summary tab as a convenience only; these values are not used in any calculations. The values are from the appropriate cell of DC164:DC193 of the appropriate tab IBS-1P, IBS-2P, etc. If the average premium of a given block in a given projection year is zero, the corresponding cell is assigned a null value ("").

The only other calculations that differ for IBS CY Pooling Summary relative to Current Market Summary 5 blocks are shown below.

W13:W41: Global Company New Business Rate by Projection Year (GlobalComNewBusnRate ${ }_{z}$ ):

$$
\begin{aligned}
& \quad \text { MarketRate }_{\mathrm{z}}^{*}(1-\text { Disc@Intro }),^{\mathrm{z}=1 \text { or } \mathrm{z}=\text { PoolingYr }} \begin{array}{l}
\text { } 0, \\
\text { GlobalComNewBusnRate } \\
\mathrm{z}-1, \mathrm{y}
\end{array} *\left(1+\text { ImpRateIncRen }_{\mathrm{z}}\right), \\
& \text { Disc@Intro is from Global Assumptions!D26 } \\
& \text { PoolingYr is from IBS Assump CY pooling!E3 }
\end{aligned}
$$

## Interblock Subsidy.xls - IBS CY Pooling Summary

Differences in calculations between IBS CY Pooling Summary and Current Market Summary 5 blocks (continued):

X13:X41: Requested Rate Increase for New Business by Projection Year (ReqRateIncNew ${ }_{z}$ ):

```
ActTrend \(_{\text {z-1 }}\),
\(\mathrm{z} \leq\) PoolingYr +1
```

$=\quad \max \left\{0,\left[\right.\right.$ ActualLR $\mathrm{z}_{\mathrm{z}-2} /$ ExpectedLR $_{\mathrm{z}-2} *\left(1+\text { ActTrend }_{\mathrm{z}-2}\right)^{2}$
/ (1 + ImpRateIncNew ${ }_{z-1}$ ) - 1], [ActualLR ${ }_{z-2} / \operatorname{MaxLR}$

* $\left.\left.\left(1+\text { ActTrend }_{\mathrm{z}-2}\right)^{2} /\left(1+\operatorname{ImpRateIncNew}_{\mathrm{z}-1}\right)-1\right]\right\}$, otherwise

PoolingYr is from IBS Assump CY pooling!E3
ExpectedLR $_{z-2}$ is from the appropriate cell of IBS Assump CY pooling!AC19:AC48
MaxLR is from IBS Assump CY pooling!M5

Z8: IBS CY Pooling Summary does not have a Year of Introduction cell as in Current Market Summary 5 blocks.

BT51:CM80 To calculate Aggregate Combined Actual Lapse Rates by Cohort, Current Market Summary 5 blocks sums the values of this parameter from CM-1, CM-2, CM-3, CM-4, and CM-5. In contrast, IBS CY Pooling Summary calculates weighted averages (weighted by the relative number of standard and impaired lives) of the Aggregate Actual Lapse Rates of Standard Lives by Cohort and the Aggregate Actual Lapse Rates of Impaired Lives by Cohort calculated previously in the IBS CY Pooling Summary tab.

## Interblock Subsidy.xls - IBS CY Pooling Summary

Differences in calculations between IBS CY Pooling Summary and Current Market Summary 5 blocks (continued):

AX89:BQ118 Aggregate Premium Rates after Durational Adjustment but Before Age Adjustment, by Cohort (AggDurAdjPremRate $\mathrm{e}_{\mathrm{z}, \mathrm{y}}$ ):

```
    DurAdjPremRate e,y, z < PoolingYr
    0,
=
    ComNewBusnRate }\mp@subsup{}{z}{
    AggDurAdjPremRate }\mp@subsup{\textrm{z}}{-1,\textrm{y}}{*}*(1+\mp@subsup{\textrm{ImpRateIncRen}}{z}{})*(1+\mp@subsup{\textrm{DRI}}{\textrm{x}}{}),\quad\mathrm{ otherwise
DurAdjPremRate is from the appropriate cell of IBS-1P!AX89:AZ118 for \(\mathrm{y}=1,2\), and 3 , from the appropriate cell of IBS2-P!BA89:BC118 for \(\mathrm{y}=4,5\), and 6 , etc.
PoolingYr is from IBS Assump CY Pooling!E3
```

Note that the formula only applies for $\mathrm{y}=1,2,3, \ldots, 15$, and that it assumes that block1 is issued in years $1-3$ only, block 2 is issued in years 4-6 only, etc.

DK159 Year at which Pooling Begins appears at DK159 in IBS CY Pooling Summary as compared to DJ159 in Current Market Summary 5 blocks.

## Interblock Subsidy.xls - IBS-1P, IBS-2P, IBS-3P, IBS-4P, IBS-5P

The IBS-1P, IBS-2P, etc., tabs are analogous to the CM-1, CM-2, etc., tabs. The former contain the calculations for each block when calendar year pooling is used; the latter contain the calculations for each block when no pooling is used. Where CM-1, CM-2, etc., refer to values in the tab 'Current Market Assump 5 blocks', IBS-1P, IBS-2P, etc., refer to the analogous values from the tab 'IBS Assump CY pooling'. Similarly, where CM1, CM-2, etc., refer to values from the tab 'Current Market Summary 5 blocks', IBS-1P, IBS-2P, etc., refer to the analogous values from the tab 'IBSCY Pooling Summary'.

It can be demonstrated that the two sets of tabs are consistent in the pre-pooling period by setting the year at which pooling begins to 31 in 'IBS Assump CY pooling' (which means that there is no pooling) and then comparing the results of CM-1 vs. IBS-1P, CM-2 vs. IBS-2P, etc.

The only difference between the two tabs is the calculation of Company New Business Rate in cells W12:W41. The formula used in IBS-1P, IBS-2P, etc., is as follows:

$$
\text { GlobalComNewBusnRate }_{\mathrm{z}}, \quad \mathrm{z} \geq \text { PoolingYr }
$$

$=\quad$ MarketRate $_{\mathrm{z}} *(1-$ Disc@Intro $) \quad \mathrm{z}<$ PoolingYr and $\mathrm{z}=$ Intro $\mathrm{Yr}_{\mathrm{b}}$
ComNewBusnRate $_{z-1} *\left(1+\right.$ ImpRateIncRen $\left._{z}\right)$, otherwise

GlobalComNewBusnRate ${ }_{\text {z }}$ is from the appropriate cell of IBS CY Pooling Summary!W12:W41
PoolingYr is from IBS Assump CY pooling!E3
Disc@Intro is from Global Assumptions!D26
Intro $\mathrm{Yr}_{\mathrm{b}}$ is from the appropriate cell of IBS Assump CY pooling!D11:D15

## Interblock Subsidy.xls - IBS Assump DUR pooling

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| E3 | Duration at which Pooling Begins <br> (PoolingDur) | $=1$ |  | Hardcoded value; value of 31 indicates no pooling. |
| D11:D15 | Year of Introduction by Block <br> (Intro $\mathrm{Yr}_{\mathrm{b}}$ ) | $\begin{aligned} & 1, \\ & 4, \\ & 7, \\ & 10, \\ & 13, \end{aligned}$ | $\begin{aligned} & \mathrm{b}=1 \\ & \mathrm{~b}=2 \\ & \mathrm{~b}=3 \\ & \mathrm{~b}=4 \\ & \mathrm{~b}=5 \end{aligned}$ | Hardcoded values |
| L4 | Target Lifetime Loss Ratio (TargetLR) | = 65.00\% |  | Hardcoded value |
| M5 | Maximum Allowable Loss Ratio <br> (MaxLR) | From Current Market Assump 5 blocks!M5 |  |  |
| L7 | Flag to Include Trend (TrendFlag) | $=1$ |  | Hardcoded value; value of 1 means to include trend in projections, value of 0 means to exclude trend. |
| L11 | Initial Reference Claim Cost for Standard Lives (InitRefClaims ${ }_{\mathrm{st}}$ ) | From Global Assumptions!D49 |  | Best estimate of starting claim costs for standard lives |

## Interblock Subsidy.xls - IBS Assump DUR pooling

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| N11 | Pricing Assumption of Initial Reference Claim Cost for Standard Lives (InitRefClaims ${ }_{\text {st(pr) }}$ ) | = InitRefClaims ${ }_{\text {st }}$ | Standard lives starting claim costs used in initial pricing; the model provides the flexibility to adjust the baseline claims for use in pricing, but the model currently does not make any such adjustment. |
| L12 | Initial Reference Claim Cost for Impaired Lives <br> (InitRefClaims ${ }_{\text {im }}$ ) | From Global Assumptions!D60 | Best estimate of starting claim costs for impaired lives |
| N12 | Pricing Assumption of Initial Reference Claim Cost for Impaired Lives (InitRefClaims ${ }_{\mathrm{im}(\mathrm{pr})}$ ) | $=$ InitRefClaims $_{\text {im }}$ | Impaired lives starting claim costs used in initial pricing; the model provides the flexibility to adjust the baseline claims for use in pricing, but the model currently does not make any such adjustment. |

## Interblock Subsidy.xls - IBS Assump DUR pooling

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| M14 | Durational Deterioration Limitation Period (DDLP) | $=5$ |  | Hardcoded value; period during which the probability of a standard life becoming impaired is assumed to be greater than zero for pricing purposes |
| M15 | Expected Premium Rate (ExpPrem) | From Current Market Assump 5 blocks!M15 |  |  |
| $\begin{aligned} & \text { O4, Q4, S4, U4, } \\ & \text { W4 } \end{aligned}$ | Standard Lives Morbidity Adjustment Factors by Block (MorbAdjb(st)) | From the appropriate cell of Current Market Assump 5 blocks!O4, Q4, S4, U4, or W4 |  |  |
| $\begin{aligned} & \text { P4, R4, T4, V4, } \\ & \text { X4 } \end{aligned}$ | Impaired Lives Morbidity Adjustment Factors by Block (MorbAdjb(im) | From the appropriate cell of Current Market Assump 5 blocks!P4, R4, T4, V4, or X4 |  |  |
| R6:R10 | Durational Rate Increase ( $\mathrm{DRI}_{\mathrm{x}}$ ) | Renewal 1 ( $x=2$ ): <br> Renewal 2 ( $\mathrm{x}=3$ ): <br> Renewal 3 ( $\mathrm{x}=4$ ): <br> Renewal 4 ( $\mathrm{x}=5$ ): <br> Renewals 5-29 ( $x=6,7,8, \ldots, 30$ ) | $\begin{aligned} & 5 \% \\ & 5 \% \\ & 5 \% \\ & 5 \% \\ & 0 \% \end{aligned}$ | Hardcoded values; represents the additional rate increase needed each year due to anticipated wearoff of underwriting |

## Interblock Subsidy.xls - IBS Assump DUR pooling

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| B19:B48 | Global Baseline Sales by Projection Year <br> (GlobalBaseSales ${ }_{z}$ ) | From the appropriate cell of Global Assumptions!O15:O44 |  |
| C19:G48 | Baseline Sales by Projection Year by Block <br> (BaseSales ${ }_{z, \mathrm{~b}}$ ) | From the appropriate cell of Global Assumptions!P15:T44 |  |
| J19:J48 | Standard Lives Base Lapse Rates Used in Pricing ( $\mathrm{q}_{\mathrm{x}(\mathrm{st}, \mathrm{pr})}$ ) | $=\max \left\{\mathrm{q}_{\min (\mathrm{st}),}, \min \left[\mathrm{q}_{\max (\mathrm{st})}, \operatorname{Baseq}_{\mathrm{x}(\mathrm{st})}+\left(\left(\left(\mathrm{PAF}_{\mathrm{x}+1} /\right.\right.\right.\right.\right.$ PAF $_{\mathrm{x}} *$ AccumDRI $_{\mathrm{x}+1}$ <br> $/$ AccumDRI $\left.\left._{\mathrm{x}}\right)-1\right) *$ LapseAdjTrend $\left._{\mathrm{st}}\right)+\left(\left(\right.\right.$ AccumDRI $\left._{\mathrm{x}+1}-1\right) *$ <br> LapseAdjMkt ${ }_{\mathrm{st}}$ ]\} <br> $\mathrm{q}_{\text {min(st })}$ is from Global Assumptions!D40 <br> $\mathrm{q}_{\max (s t)}$ is from Global Assumptions!D39 <br> Baseq $_{\text {(st, pr) }}$ is from the appropriate cell of Global Assumptions!E29:E33 <br> LapseAdjTrend $_{\text {st }}$ is from Global Assumptions!D36 <br> LapseAdjMkt $_{\text {st }}$ is from Global Assumptions!D37 | Baseline standard lives lapse rates adjusted to reflect higher anticipated lapses due to rate increases exceeding claim trend and renewal rates exceeding the market new business rate |

## Interblock Subsidy.xls - IBS Assump DUR pooling

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| K19:K48 | Impaired Lives Base Lapse Rates Used in Pricing $\left(\mathrm{q}_{\mathrm{x}(\mathrm{im}, \mathrm{pr})}\right)$ | $\mathrm{q}_{\min (\mathrm{im})}$ is from Global Assumptions!D58 <br> $\mathrm{q}_{\max (\mathrm{im})}$ is from Global Assumptions!D57 <br> Baseq $_{\mathrm{im}(\mathrm{pr})}$ is from Global Assumptions!D54 <br> LapseAdjTrend $_{\mathrm{im}}$ is from Global Assumptions!D56 |  | Baseline impaired lives lapse rates adjusted to reflect higher anticipated lapses due to rate increases exceeding claim trend during durational deterioration limitation period; beyond DDLP, impaired lives lapse rates are equal to standard lives lapse rates. |
| L19:L48 | Rate of Impairment Used in Pricing $\left(\mu_{\mathrm{x}(\mathrm{pr})}\right)$ | $\begin{array}{ll} = & 0, \\ \mu_{\mathrm{x}}, \end{array}$ <br> $\mu_{\mathrm{x}}$ is from the appropriate cell of Global Assumptio | $\begin{aligned} & x>\text { DDLP } \\ & x \leq \text { DDLP } \\ & \end{aligned}$ |  |
| M19:M48 | Number of Standard Lives $\left(l_{x(s t)}\right)$ | $\begin{array}{ll} =\quad 1, \\ \quad l_{\mathrm{x}-1(\mathrm{st})} *\left(1-\mu_{\mathrm{x}-1(\mathrm{pr})}\right) & *\left(1-\mathrm{q}_{\mathrm{x}-1(\mathrm{st}, \mathrm{pr})}\right), \end{array}$ | $\begin{array}{r} x=1 \\ x=2,3,4, \ldots, 30 \end{array}$ | The values in columns M , N , and O represent proportions of the number of first-year standard lives. |
| N19:N48 | Number of Impaired Lives $\left(l_{x(i m)}\right)$ | $\begin{aligned} & =\quad 0, \\ & {\left[\mathrm{l}_{\mathrm{x}-1(\mathrm{im})} *\left(1-\mathrm{q}_{\mathrm{x}-1(\mathrm{im}, \mathrm{pr})}\right)\right]+\left[\mathrm{l}_{\mathrm{x}-1(\mathrm{st})} * \mu_{\mathrm{x}-1(\mathrm{pr})}\right]} \end{aligned}$ | $\begin{array}{r} x=1 \\ x=2,3,4, \ldots, 30 \end{array}$ |  |

## Interblock Subsidy.xls - IBS Assump DUR pooling

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| O19:048 | Number of Total Lives $\left(l_{x}\right)$ | $=l_{\text {x(st) }}+l_{\text {x(im) }}$ |  |
| P19:P48 | Accumulated Trend (AccumTrend ${ }^{\text {x }}$ ) | $\begin{array}{llr} \hline= & 1, & x=1 \\ & \text { AccumTrend }{ }_{x-1} *[1+(\text { Trend } * \text { TrendFlag })], & x=2,3,4, \ldots, 30 \end{array}$ <br> Trend is from Global Assumptions!D21 |  |
| Q19:Q48 | Discount Factor $\left(v_{x}\right)$ | $\begin{array}{lr} 1, & x=1 \\ v_{x-1} /(1+\text { int }), & x=2,3,4, \ldots, 30 \end{array}$ |  |
| R19:R49 | Premium Age Factor $\left(\mathrm{PAF}_{\mathrm{x}}\right)$ | $\begin{array}{lr} 1, & x=1 \\ & \operatorname{PAF}_{x-1} *(1+\text { PremGrowthAge }), \end{array} \quad x=2,3,4, \ldots, 30$ <br> PremGrowthAge is from Global Assumptions!C25 |  |

## Interblock Subsidy.xls - IBS Assump DUR pooling

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| S19:S48 | Pricing Claims $\left(\mathrm{C}_{\mathrm{x}(\mathrm{pr})}\right)$ | InitRefPrem is from Global Assumptions!C24 <br> MorbAdj ${ }_{s t}$ is from Global Assumptions!D51 <br> $\mathrm{DF}_{\mathrm{x}}$ is from the appropriate cell of IBS CY Pooling Summary!D12:D41 | Standard lives’ claims are adjusted each year for morbidity, duration (within the DDLP), aging, and trend. <br> Impaired lives’ claims are adjusted each year for aging and trend. |
| T19:T48 | Annual Durational Rate Increase $\left(\mathrm{ADRI}_{\mathrm{x}}\right)$ | $\begin{array}{lr} \hline=, & x=1 \\ \text { DRI }_{x}, & x=2,3,4, \ldots, 30 \end{array}$ |  |
| U19:U49 | Accumulated Durational Rate Increase Factor (AccumDRI ${ }_{\mathrm{x}}$ ) | $\begin{array}{rr} 1, & x=1 \\ & \text { AccumDRI }_{\mathrm{x}-1} *\left(1+\text { ADRI }_{\mathrm{x}}\right), \end{array} \quad \mathrm{x}=2,3,4, \ldots, 31$ | A $31^{\text {st }}$-year value is needed for the calculation of $\mathrm{q}_{30(\mathrm{st}, \mathrm{pr})}$. |

## Interblock Subsidy.xls - IBS Assump DUR pooling

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| V19:V48 | Pricing Premium $\left(\mathrm{P}_{\mathrm{x}(\mathrm{pr})}\right)$ | $\begin{aligned} & \mathrm{l}_{1} * \sum_{\mathrm{i}=1}^{30}\left(\mathrm{C}_{\mathrm{i}(\mathrm{pr})} * \mathrm{v}_{\mathrm{i}}\right) / \sum_{\mathrm{j}=1}^{30}\left(\mathrm{l}_{\mathrm{j}} * \text { PAF }_{\mathrm{j}} * \text { AccumTrend }_{\mathrm{j}} * \mathrm{v}_{\mathrm{j}} * \text { AccumDRI }_{\mathrm{j}}\right) \\ &=\quad \mathrm{x}=1 \\ & \\ & \\ & \mathrm{P}_{1(\mathrm{pr})} / \mathrm{l}_{1} * \mathrm{PAF}_{\mathrm{x}} * \mathrm{l}_{\mathrm{x}} * \text { AccumTrend }_{\mathrm{x}} * \text { ADRI }_{\mathrm{x}} / \mathrm{ADRI}_{1}, \\ & \mathrm{x}=2,3,4, \ldots, 30 \end{aligned}$ <br> PAF $_{x}$ is from the appropriate cell of Current Market Summary 5 blocks!J12:J41 | This formula should use the $\mathrm{PAF}_{\mathrm{x}}$ values calculated in this tab rather than pulling them from Current Market Summary 5 blocks. |
| W19:W48 | Pricing Loss Ratio $\left(\mathrm{LR}_{\mathrm{x}(\mathrm{pr})}\right)$ | $=\mathrm{C}_{\mathrm{x}(\mathrm{pr})} / \mathrm{P}_{\mathrm{x}(\mathrm{pr})}$ |  |

## Interblock Subsidy.xls - IBS Assump DUR pooling

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| X19:X48 | Pricing Expenses $\left(\operatorname{Exp}_{x(p r)}\right)$ | $\begin{array}{rl} =\mathrm{l}_{\mathrm{x}} & * \operatorname{Exp}_{\text {Pol }(\mathrm{x})} *(1+\mathrm{Inflation})^{\mathrm{x}-1} \\ & +\operatorname{Exp} \% \mathrm{C}(\mathrm{x}) * \mathrm{C}_{\mathrm{x}(\mathrm{pr})} \\ & +\operatorname{Comm}_{\mathrm{B}(\mathrm{x})} * \mathrm{P}_{1(\mathrm{pr})} / \mathrm{l}_{1} * \mathrm{l}_{\mathrm{x}} \\ & +\operatorname{Comm}_{\mathrm{R}(\mathrm{x})} *\left[\mathrm{P}_{\mathrm{x}(\mathrm{pr})}-\left(\mathrm{P}_{1(\mathrm{pr})} / \mathrm{l}_{1} * \mathrm{l}_{\mathrm{x}}\right)\right] \\ & +\operatorname{Expoth} \% \mathrm{P}(\mathrm{x}) * \mathrm{P}_{\mathrm{x}(\mathrm{pr})} \end{array}$ <br> Exppol(x) is from the appropriate cell of IBS CY Pooling Summary!E12:E41 <br> Inflation is from Global Assumptions!B64 <br> Exp\%C(x) is from the appropriate cell of IBS CY Pooling Summary!F12:F41 <br> Comm $_{B(x)}$ is from the appropriate cell of IBS CY Pooling Summary!G12:G41 <br> Comm $_{R(x)}$ is from the appropriate cell of IBS CY Pooling Summary!H12:H41 <br> Expoth\%P(x) is from the appropriate cell of IBS CY Pooling Summary!I12:I41 |  |
| Y19:Y48 | Pricing Expense as a Percentage of Pricing Premium | $=\operatorname{Exp}_{\mathrm{x}(\mathrm{pr})} / \mathrm{P}_{\mathrm{x}(\mathrm{pr})}$ |  |
| Z19:Z48 | Pricing Operating Gain $\left(\right.$ Gain $\left._{\mathrm{x}(\mathrm{pr})}\right)$ | $=P_{x(p r)}-C_{x(p r)}-\operatorname{Exp}_{x(p r)}$ |  |

## Interblock Subsidy.xls - IBS Assump DUR pooling

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AA19:AA48 | Pricing Gain as a Percentage of Pricing Premium | $=\mathrm{Gain}_{\mathrm{x}(\mathrm{pr})} / \mathrm{P}_{\mathrm{x}(\mathrm{pr})}$ |  |
| S50 | Simple Sum of Pricing Claims (SumClaims) | $=\sum_{x=1}^{30} C_{x(p r)}$ |  |
| V50 | Simple Sum of Pricing Premiums <br> (SumPrem) | $=\sum_{\mathrm{x}=1}^{30} \mathrm{P}_{\mathrm{x}(\mathrm{pr})}$ |  |
| W50 | Pricing Loss Ratio, Using Simple Sums | = SumClaims / SumPrem |  |
| X50 | Simple Sum of Pricing <br> Expenses <br> (SumExp) | $=\sum_{\mathrm{x}=1}^{30} \operatorname{Exp}_{\mathrm{x}(\mathrm{pr})}$ |  |
| Y50 | Pricing Expense Ratio, Using Simple Sums | = SumExp / SumPrem |  |
| Z50 | Simple Sum of Pricing Gains (SumGain) | $=\sum_{x=1}^{30} \operatorname{Gain}_{x}$ |  |

## Interblock Subsidy.xls - IBS Assump DUR pooling

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AA50 | Pricing Gain Ratio, Using Simple Sums | = SumGain / SumPrem |  |
| S51 | Present Value of Pricing Claims over 10 Years (PVClaims $_{10}$ ) | $=\mathrm{NPV}_{\text {int }}\left(\mathrm{C}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}, \quad$ where NPV is taken over $\mathrm{x}=1,2,3, \ldots .10$ |  |
| V51 | Present Value of Pricing Premiums over 10 Years (PVPrem ${ }_{10}$ ) | $=\mathrm{NPV}_{\text {int }}\left(\mathrm{P}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}, \quad$ where NPV is taken over $\mathrm{x}=1,2,3, \ldots .10$ |  |
| W51 | Pricing Loss Ratio, Using 10-Year NPVs | $=$ PVClaims $_{10} /$ PVPrem $_{10}$ |  |
| X51 | Present Value of Pricing Expenses over 10 Years (PVExp ${ }_{10}$ ) | $=N P V_{\text {int }}\left(\operatorname{Exp}_{x(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}$, where NPV is taken over $\mathrm{x}=1,2,3, \ldots .10$ |  |
| Y51 | Pricing Expense Ratio, Using 10-Year NPVs | $=$ PVExp $_{10} /$ PVPrem $_{10}$ |  |
| Z51 | Present Value of Pricing Gains over 10 Years (PVGain ${ }_{10}$ ) | $=\operatorname{NPV}_{\mathrm{int}}\left(\operatorname{Gain}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}$ <br> where NPV is taken over $x=1,2,3, \ldots .10$ |  |
| AA51 | Pricing Gain Ratio, Using 10-Year NPVs | $=$ PVGain $_{10} /$ PVPrem $_{10}$ |  |

## Interblock Subsidy.xls - IBS Assump DUR pooling

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| S52 | Present Value of Pricing Claims over 30 Years (PVClaims ${ }_{30}$ ) | $=\mathrm{NPV}_{\text {int }}\left(\mathrm{C}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}, \quad$ where NPV is taken over $\mathrm{x}=1,2,3, \ldots .30$ |  |
| V52 | Present Value of Pricing Premiums over 30 Years (PVPrem ${ }_{30}$ ) | $=\mathrm{NPV}_{\text {int }}\left(\mathrm{P}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}, \quad$ where NPV is taken over $\mathrm{x}=1,2,3, \ldots 30$ |  |
| W52 | Pricing Loss Ratio, Using 30-Year NPVs | $=$ PVClaims $_{30} /$ PVPrem $_{30}$ |  |
| X52 | Present Value of Pricing Expenses over 30 Years (PVExp ${ }_{30}$ ) | $=N P V_{\text {int }}\left(\operatorname{Exp}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}$, where NPV is taken over $\mathrm{x}=1,2,3, \ldots .30$ |  |
| Y52 | Pricing Expense Ratio, Using 30-Year NPVs | $=$ PVExp $_{30} /$ PVPrem $_{30}$ |  |
| Z52 | Present Value of Gains over 30 Years $\left(\right.$ PVGain $\left._{30}\right)$ | $=\operatorname{NPV}_{\mathrm{int}}\left(\operatorname{Gain}_{\mathrm{x}(\mathrm{pr})}\right) * \sqrt{1+\mathrm{int}}$ <br> where NPV is taken over $\mathrm{x}=1,2,3, \ldots .30$ |  |
| AA52 | Pricing Gain Ratio, Using 30-Year NPVs | $=$ PVGain $_{30} /$ PVPrem $_{30}$ |  |

## Interblock Subsidy.xls - IBS Assump DUR pooling

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| S53 | PV of Pricing Claims as a <br> Percentage of PV of Pricing <br> Premium | $=$ PVClaims $_{30} /$ PVPrem $_{30}$ | Model calculations <br> produce a stream of <br> premiums such that <br> this is equal to the <br> target lifetime loss <br> ratio. |
| V53 | PV of Pricing Premium as a <br> Percentage of PV of Pricing <br> Premium | $=$ PVPrem $_{30} /$ PVPrem $_{30}$ | Identically equal to <br> 1.000. |
| X53 | PV of Pricing Expenses as a <br> Percentage of PV of Pricing <br> Premium | $=$ PVExp $_{30} /$ PVPrem $_{30}$ |  |
| Z53 | PV of Pricing Gain as a <br> Percentage of PV of Pricing <br> Premium | $=$ PVGain $_{30} /$ PVPrem $_{30}$ |  |
| O54 | Interest <br> (int) | From Global Assumptions!B63 |  |
| AC19:AC48 | Loss Ratio by Projection <br> Year <br> (ExpectedLR | See formula for cells AF51:BI51, below. |  |

## Interblock Subsidy.xls - IBS Assump DUR pooling

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AE19:AE48 | Target Loss Ratios for Durational Pooling (DurTLR ${ }_{z}$ ) | $\begin{array}{ll} =0, & \mathrm{z}<\text { PoolingDur } \\ \text { TLRAfterPooling }_{\mathrm{z}}, & \mathrm{z} \geq \text { PoolingDur } \end{array}$ |  |
| AF19:BI48 | Expected Premium Inforce at Age Adjusted Market New Business Rates, by Cohort (ExpInforce $_{z, \mathrm{x}}$ ) | $=\quad \begin{aligned} & 0, \\ & \text { AggAgeAdjMktNewBusnRate }_{z, y} *\left(\operatorname{Aggl}_{z, y(s t)}+\operatorname{Aggl}_{z, y(\text { (im })}\right), \end{aligned}$ <br> AggAgeAdjMktNewBusnRate ${ }_{z, y}$ is from the appropriate cell of IBS DUR Pooling Summary!BT89:CM118 <br> $\mathrm{Aggl}_{z, \mathrm{y}(\mathrm{st})}$ is from the appropriate cell of IBS DUR Pooling Summary!AB51:AU80 <br> $\mathrm{Aggl}_{\mathrm{z}, \mathrm{y}(\mathrm{im})}$ is from the appropriate cell of IBS DUR Pooling Summary!AB89:AU118 | Note that in this table, columns represent projection years, rows represent durations, and diagonals represent issue years. |
| AF51:BI51 | Composite Expected Loss Ratio by Projection Year (ExpectedLR ${ }_{z}$ ) | $=\left(\sum_{\mathrm{i}=1}^{30} \operatorname{ExpInforce}_{\mathrm{z}, \mathrm{i}} * \mathrm{LR}_{\mathrm{i}(\mathrm{pr})}\right) / \sum_{\mathrm{j}=1}^{30} \text { ExpInforce }_{\mathrm{z}, \mathrm{j}}, \quad \quad \text { otherwise }$ |  |
| AF52:BI52 | Total Expected Premium Inforce by Projection Year | $=\sum_{\mathrm{x}=1}^{30} \text { ExpInforce }_{\mathrm{z}, \mathrm{x}}$ |  |
| AG53 | Year at which Pooling Begins | = PoolingDur |  |

## Interblock Subsidy.xls - IBS Assump DUR pooling

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AF54:BI54 | Total Expected Premium Inforce for Durations at and Beyond the Pooling Year, by Projection Year (ExpInforceAfterPooling ${ }_{z}$ ) | $=\sum_{\mathrm{x}=\text { PoolingDur }}^{30} \text { ExpInforce }_{\mathrm{z}, \mathrm{x}}$ |  |
| AF55:BI55 | Composite Target Loss Ratio for Durations at and Beyond the Pooling Year, by Projection Year <br> (TLRAfterPooling ${ }_{z}$ ) | $=\left(\sum_{\mathrm{i}=\text { PoolingDur }}^{30} \text { ExpInforce }_{\mathrm{z}, \mathrm{i}} * \mathrm{LR}_{\mathrm{i}(\mathrm{pr})}\right) / \sum_{\mathrm{j}=\text { PoolingDur }}^{30} \text { ExpInforce }_{\mathrm{z}, \mathrm{j}}$ |  |
| BT16 | First Duration after Pooling Starts | $=$ PoolingDur +1 | Not used in any calculations |
| BL19:CO48 | Target Loss Ratio for Pool when Durational Pooling Applies, by Projection Year and Duration <br> (PoolTLR ${ }_{z, \mathrm{x}}$ ) | $\begin{array}{\|lr} \hline= & 0, \\ \mathrm{LR}_{\mathrm{x}(\mathrm{pr})}, & \mathrm{x}<\text { PoolingDur or } \mathrm{x}>\mathrm{z} \\ \text { otherwise } \end{array}$ |  |
| BL51:CO51 | Target Loss Ratio for Pool when Durational Pooling Applies, by Projection Year | $=\begin{aligned} & 0, \quad \sum_{x=1}^{30} \text { PoolTLR }_{x, z}=0 \\ & \sum_{x=1}^{30} \text { ExpInforce }_{z, x} * \text { PoolTLR }_{z, x} / \text { ExpInforceAfterPooling }_{z} \text {, otherwise } \end{aligned}$ | Values match those in cells AF55:BI55 for projection years on and after PoolingDur. |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| D4 | Reference Premium (InitRefPrem) | From Global Assumptions!C24 |  |
| D5 | Initial Reference Claim Cost for Standard Lives (InitRefClaims ${ }_{\text {st }}$ ) | From Global Assumptions!D49 |  |
| D6 | Initial Reference Claim Cost for Impaired Lives (InitRefClaims ${ }_{i m}$ ) | From Global Assumptions!D60 |  |
| B12:B41 | Base Lapse Rates for Standard Lives (Baseq $_{\mathrm{x}(\mathrm{st})}$ ) | From the appropriate cell of Global Assumptions!D29:D33 |  |
| C12:C41 | Base Lapse Rates for Impaired Lives ( Baseq $\left._{x(\text { (im) }}\right)$ | From Global Assumptions!C54 |  |
| D12:D41 | Duration Factor ( $\mathrm{DF}_{\mathrm{x}}$ ) | From the appropriate cell of Global Assumptions!B77:B81 |  |
| E12:E41 | Per Policy Expense Rates $\left(\operatorname{Exp}_{\text {Pol(x) }}\right)$ | From the appropriate cell of Global Assumptions!B70:B74 |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| F12:F41 | Percentage-of-Claims <br> Expense Rates <br> (Exp\%c(x)) | From the appropriate cell of Global Assumptions!C70:C74 |  |
| G12:G41 | Base Commission Rates $\left(\right.$ Comm $\left._{B(x)}\right)$ | From the appropriate cell of Global Assumptions!D70:D74 |  |
| H12:H41 | Renewal Commission Rates $\left(\operatorname{Comm}_{\mathrm{R}(\mathrm{x})}\right)$ | From the appropriate cell of Global Assumptions!E70:E74 |  |
| I12:I41 | Other Premium-Related Expense Rates (Expoth\%p(x)) | From the appropriate cell of Global Assumptions!F70:F74 |  |
| J12:J41 | Premium Age Factor $\left(\mathrm{PAF}_{\mathrm{x}}\right)$ | $\begin{array}{lr} 1, & x=1 \\ \operatorname{PAF}_{x-1} *(1+\text { PremGrowthAge }), & x=2,3,4, \ldots, 30 \end{array}$ <br> PremGrowthAge is from Global Assumptions!C25 |  |
| K12:K41 | Rate of Impairment $\left(\mu_{\mathrm{x}}\right)$ | From the appropriate cell of Global Assumptions!E43:E47 |  |
| L12:L41 | Annual Durational Rate Increase <br> $\left(\mathrm{ADRI}_{\mathrm{x}}\right)$ | From the appropriate cell of IBS Assump DUR pooling!T19:T48 |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| O12:041 | Reference Premium ( RefPrem $_{z}$ ) | $\begin{array}{llr} =\quad \text { InitRefPrem, } & z=1 \\ \text { RefPrem }_{z-1} *\left(1+\text { ActTrend }_{z-1}\right), & z=2,3,4, \ldots, 30 \end{array}$ |  |
| P12:P41 | Baseline Sales (BaseSales ${ }_{z}$ ) | From the appropriate cell of IBS Assump DUR pooling!B19:B48 |  |
| Q12:Q41 | Standard Lives Reference Claims <br> (RefClaims $_{z(\mathrm{st})}$ ) | $\begin{array}{llr} \hline= & \text { InitRefClaims }_{\text {st }}, & z=1 \\ & \text { RefClaims }_{z-1(\mathrm{st})} *\left(1+\text { ActTrend }_{z-1}\right), & \mathrm{z}=2,3,4, \ldots, 30 \end{array}$ |  |
| R12:R41 | Impaired Lives Reference Claims (RefClaims $_{\text {z(im) }}$ ) | $\begin{array}{llr} =\text { InitRefClaims }_{\mathrm{im}}, & \mathrm{z}=1 \\ & \text { RefClaims }_{\mathrm{z}-1(\mathrm{im})} *\left(1+\text { ActTrend }_{z-1}\right), & \mathrm{z}=2,3,4, \ldots, 30 \end{array}$ |  |
| S12:S41 | Actual Trend (ActTrend ${ }_{z}$ ) | From the appropriate cell of Global Assumptions!B106:B135 |  |
| T13:T41 | Implemented Rate Increase for New Business (ImpRateIncNew ${ }_{z}$ ) | $=\min \left(\text { RegDamp } * \text { ReqRateIncNew }{ }^{2}\right. \text {, MaxRateInc) }$ <br> MaxRateInc is from Global Assumptions!D100 <br> RegDamp is from the appropriate cell of Global Assumptions!D90:D99, based on the value of ReqRateIncNew ${ }_{z}$ | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$. |
| U13:U41 | Implemented Rate Increase for Renewal Business (ImpRateIncRen ${ }_{z}$ ) | $=$ ImpRateIncNew ${ }_{\text {z }}$ | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$. |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| V12:V41 | Market New Business Rate (MarketRate ${ }_{z}$ ) | $\begin{array}{rlr} = & \mathrm{P}_{1(\mathrm{pr})}, & \mathrm{z}=1 \\ & \text { MarketRate }_{\mathrm{z}-1} *\left(1+\text { ActTrend }_{\mathrm{z}-1}\right), \end{array} \quad \mathrm{Z}=2,3,4, \ldots, 30$ <br> $\mathrm{P}_{1(\mathrm{pr})}$ is from IBS Assump DUR pooling!V19 |  |
| W12:W41 | Company New Business Rate (GlobalComNewBusnRate ${ }_{z}$ ) |  |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| X13:X41 | Requested Rate Increase for New Business (GlobalReqRateIncNew ${ }_{z}$ ) | $\begin{aligned} & \text { ActTrend }_{z-1}, \quad \mathrm{z} \leq \text { PoolingDur + } 1 \\ & =\quad \max \left\{0,\left[\text { ActualLR }_{z-2} / \text { PoolAggExpectedLR }_{z-2}\right.\right. \\ & \left.*\left(1+\text { ActTrend }_{z-2}\right)^{2} /\left(1+\text { ImpRateIncNew }_{z-1}\right)-1\right], \\ & {\left[\text { ActualLR }_{z-2} / \operatorname{MaxLR}^{*}\left(1+\text { ActTrend }_{z-2}\right)^{2}\right.} \\ & \left.\left.\quad /\left(1+\operatorname{ImpRateIncNew}_{z-1}\right)-1\right]\right\}, \quad \text { otherwise } \end{aligned}$ <br> PoolingDur is from IBS Assump DUR pooling!E3 <br> MaxLR is from IBS Assump DUR pooling!M5 | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$. |
| Y13:Y41 | Requested Rate Increase for Renewal Business (GlobalReqRateIncRen ${ }_{z}$ ) | $=$ GlobalReqRateIncNew $_{\text {z }}$ | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$. <br> The calculations in cells Z13:Z26 are extraneous. |
| AB12:AU41 | Aggregate New Business Sales by Cohort (AggSales ${ }_{z, \mathrm{y}}$ ) | $=\sum_{\mathrm{b}=1}^{5} \text { Sales }_{\mathrm{z}, \mathrm{y}, \mathrm{~b}}$ | In this and subsequent formulas in this tab, the values being aggregated are from IBS-1D, IBS-2D, IBS3D, IBS-4D, and IBS5D. |
| AB42:AU42 | Aggregate New Business Sales for Issue Year y | $=\sum_{\mathrm{z}=1}^{30} \text { AggSales }_{\mathrm{z}, \mathrm{y}}$ |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AX12:BL41 | Aggregate Actual Lapse Rates for Standard Lives by Cohort $\left(\mathrm{Aggq}_{z, y(s t)}\right)$ | $0, \quad x \geq$ PoolingDur and $\left(x \leq 1\right.$ or $y<$ Intro $\left.^{2} \mathrm{Yr}_{1}\right)$ <br> $\sum_{b=1}^{5} q_{z, y, b(s t)}$, <br> $x<$ PoolingDur <br> $\max \left\{\mathrm{q}_{\min (\mathrm{st})}, \min \left[\mathrm{q}_{\max (\mathrm{st})}\right.\right.$, Baseq $_{\mathrm{x}-1(\mathrm{st})}+\left(\left(\right.\right.$ AggAgeAdjPremRate $_{z, \mathrm{y}}$ <br> / AggAgeAdjPremRate ${ }_{z-1, \mathrm{y}}$ ) -1 - ActTrend $_{\mathrm{z}}$ ) * LapseAdjTrend $_{\mathrm{st}}$ <br> $=\quad *\left(\left(\left(\left(\right.\right.\right.\right.$ AggAgeAdjPremRate $_{\mathrm{z}, \mathrm{y}} /$ MktNewBusnRate $\left.\left._{\mathrm{z}, \mathrm{y}}\right)-1\right)$ <br> * LapseAdjMktst $)$ 1) <br> $-\left(\left(\left(\right.\right.\right.$ ComNewBusnRate $_{\mathrm{y}} /$ RefPrem $\left.\left._{\mathrm{y}}\right)-1\right) *$ LapseAdjSale $\left.\left.\left._{\mathrm{st}}\right)\right]\right\}$, $\mathrm{x} \geq$ PoolingDur and $\mathrm{y}>$ Intro $_{\mathrm{Yr}}^{1}$ and $2 \leq \mathrm{x} \leq 4$ <br> $\max \left\{\mathrm{q}_{\min (\mathrm{st})}, \min \left[\mathrm{q}_{\max (\mathrm{st})}\right.\right.$, Baseq $_{\mathrm{x}-1(\mathrm{st})}+\left(\left(\right.\right.$ AggAgeAdjPremRate $_{z, \mathrm{y}}$ <br> / AggAgeAdjPremRate ${ }_{z-1, \mathrm{y}}$ ) - 1 - ActTrend $\left._{\mathrm{z}}\right)^{*}$ LapseAdjTrend $_{\mathrm{st}}$ <br> * ((((AggAgeAdjPremRate ${ }_{z, \mathrm{y}} /$ MktNewBusnRate $\left.\left._{\mathrm{z}, \mathrm{y}}\right)-1\right)$ <br> * LapseAdjMkt ${ }_{s t}$ ) 1)]\}, otherwise <br> PoolingDur is from IBS Assump DUR pooling!E3 <br> Intro $\mathrm{Yr}_{1}$ is from IBS Assump DUR pooling!D11 <br> $\mathrm{q}_{\text {min(st) }}$ is from Global Assumptions!D40 <br> $\mathrm{q}_{\max (s t)}$ is from Global Assumptions!D39 <br> LapseAdjTrend $_{\text {st }}$ is from Global Assumptions!D36 <br> LapseAdjMkt $_{\text {st }}$ is from Global Assumptions!D37 <br> LapseAdjSale $_{\text {st }}$ is from Global Assumptions!D38 | Formula only applies for $\mathrm{y}=1,2,3, \ldots, 15$. |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| BT12:CM41 | Aggregate Newly Impaired Lives by Cohort (AggNewImpLives ${ }_{z, y}$ ) | $=\begin{array}{lr} \sum_{b=1}^{5} \text { NewImpLives }_{\mathrm{z}, \mathrm{y}, \mathrm{~b}}, & \mathrm{x}<\text { PoolingDur } \\ 0, & \text { PoolingDur } \leq \mathrm{x} \leq 1 \\ \operatorname{Aggl}_{z-1, y(\mathrm{st})} * \mu_{\mathrm{x}-1} *\left(1-\operatorname{Aggq}_{z, y(\mathrm{im})}\right), & \text { otherwise } \end{array}$ |  |
| BS42:CL42 | Aggregate Newly Impaired Lives for Issue Year y | $=\sum_{z=1}^{30} \text { AggNewImpLives }_{z, y}$ |  |
| AB51:AU80 | Aggregate Enrollment of Standard Lives by Cohort $\left(\mathrm{Aggl}_{z, \mathrm{y}(\mathrm{st}}\right)$ | $=\begin{array}{lr} \sum_{\mathrm{b}=1}^{5} l_{\mathrm{L}, \mathrm{y}, \mathrm{~b}(\mathrm{st}),} & \mathrm{x}<\text { PoolingDur } \\ \text { AggSales }_{\mathrm{z}, \mathrm{y},}, & \text { PoolingDur } \leq \mathrm{x} \leq 1 \\ & \text { AggSales }_{\mathrm{z}, \mathrm{y}}+\left[\operatorname{Aggl}_{\mathrm{z}-1, \mathrm{y}(\mathrm{st})} *\left(1-\mu_{\mathrm{x}-1}\right) *\left(1-\operatorname{Aggq}_{z, \mathrm{y}(\mathrm{st})}\right)\right], \end{array}$ |  |
| AB81:AU81 | Aggregate Enrollment of Standard Lives for Issue Year y | $=\sum_{\mathrm{z}=1}^{30} \mathrm{Aggl}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}$ |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AX51:BL80 | Aggregate Actual Lapse Rates of Impaired Lives by Cohort $\left(\operatorname{Aggq}_{z, y(\text { im })}\right)$ | PoolingDur is from IBS Assump DUR pooling!E3 <br> $\mathrm{q}_{\text {min(im) }}$ is from Global Assumptions!D58 <br> $\mathrm{q}_{\max (\mathrm{im})}$ is from Global Assumptions!D57 <br> LapseAdjTrend $_{\mathrm{im}}$ is from Global Assumptions!D56 | Formula only applies for $\mathrm{y}=1,2,3, \ldots, 15$. |
| BT51:CM80 | Aggregate Combined Actual Lapse Rates by Cohort |  |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AB89:AU118 | Aggregate Enrollment of Impaired Lives by Cohort $\left(\mathrm{Aggl}_{\mathrm{z}, \mathrm{y}(\mathrm{im})}\right)$ | $\begin{array}{ll} 0, & x \leq 1 \\ = & \sum_{b=1}^{5} l_{z, y, b(i m)}, \\ & \text { AggNewImpLives }_{z, y}+\left[\operatorname{Aggl}_{z-1, y} *\left(1-\operatorname{Aggq}_{z, y(i m)}\right)\right], \quad \text { otherwise } \end{array}$ <br> PoolingDur is from IBS Assump DUR pooling!E3 |  |
| AB119:AU119 | Aggregate Enrollment of Impaired Lives for Issue Year y | $=\sum_{\mathrm{z}=1}^{30} \operatorname{Aggl}_{\mathrm{z}, \mathrm{y}(\mathrm{im})}$ |  |
| AX89:BQ118 | Aggregate Premium Rates Before Age Adjustment, by Cohort (AggDurAdjPremRate ${ }_{z, y}$ ) | $\begin{array}{ll}  & \text { DurAdjPremRate }_{z, y, b}, \\ = & x<\text { PoolingDur } \\ \text { GlobalComNewBusnRate }_{z}, & x \geq \text { PoolingDur and } x=1 \\ & \\ & \text { AggDurAdjPremRate }_{z-1, y} *\left(1+\text { ImpRateIncRen }_{z}\right) \\ *\left(1+\text { ADRI }_{\mathrm{x}}\right), \end{array}$ <br> PoolingDur is from IBS Assump DUR pooling!E3 <br> DurAdjPremRate $\mathrm{e}_{\mathrm{z}, \mathrm{y}, \mathrm{b}}$ is from the appropriate cell of IBS- <br> 1D!AX89:AZ118 for $y=1,2,3$; from the appropriate cell of IBS- <br> 2D!BA89:BC118 for $y=4,5,6$; etc. | The formulas for $\mathrm{y}=$ $16,17,18,19$, and 20 are extraneous. |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| BT89:CM118 | Aggregate Age-Adjusted Premium Rates by Cohort (AggAgeAdjPremRate ${ }_{z, \mathrm{y}}$ ) | $=\begin{array}{ll} =\text { AggDurAdjPremRate }_{\mathrm{z}, \mathrm{y}}, & \mathrm{x}<1 \\ \text { AggDurAdjPremRRate }_{\mathrm{z}, \mathrm{y}} * \text { PAF }_{\mathrm{x}}, & \mathrm{x} \geq 1 \end{array}$ | The first condition is irrelevant since premium rates are undefined for $\mathrm{x}<1$. |
| CP90:DD118 | Rate Increase Factor by Cohort | $=$ AggDurAdjPremRate $_{\text {z,y }} /$ AggDurAdjPremRate $_{\text {z-1,y }}$ | Formula only applies for $\mathrm{y}=1,2,3, \ldots, 15$ and $\mathrm{x}>1$. |
| AB126:AU155 | Aggregate Age-Adjusted Market New Business Premium Rates by Cohort | $\begin{array}{lll} =0, & \mathrm{x}<1 \\ & \text { MarketRate }_{\mathrm{z}} * \mathrm{PAF}_{\mathrm{x}}, & \mathrm{x} \geq 1 \end{array}$ |  |
| AX123:BL123 | Morbidity Adjustment for Standard Lives by Block (MorbAdj ${ }_{s t(b)}$ ) | From the appropriate cell of IBS Assump DUR pooling!O4, Q4, S4, U4, or W4; block 1 value is in cells AX123:AZ123, block 2 value is in cells BA123:BC123, etc. |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AX126:BQ155 | Aggregate Standard Lives Claim Levels by Cohort (AggClaims $\mathrm{Z}_{\text {zy }} \mathrm{stt}$ ) | PoolingDur is from IBS Assump DUR pooling!E3 <br> MorbAdj $_{s(1)}$ is used for $\mathrm{y}=1,2,3$; MorbAdj ${ }_{\mathrm{st}(2)}$ is used for $\mathrm{y}=4,5,6$; etc. <br> MorbAdjSale ${ }_{\text {st }}$ is from Global Assumptions!D51 <br> AgingTrend is from Global Assumptions!C22 |  |
| BT123:CH123 | Morbidity Adjustment for Impaired Lives by Block (MorbAdjim(b)) | From the appropriate cell of IBS Assump DUR pooling!P4, R4, T4, V4, or X 4 ; block 1 value is in cells BT123:BV123, block 2 value is in cells BW123:BY123, etc. |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| BT126:CM155 | Aggregate Impaired Lives Claim Levels by Cohort (AggClaims $\mathrm{z}_{\mathrm{z}, \mathrm{y} \text { (im) }}$ ) | otherwise <br> PoolingDur is from IBS Assump DUR pooling!E3 <br> MorbAdj $_{\mathrm{im}(1)}$ is used for $\mathrm{y}=1,2,3$; MorbAdjim(2) is used for $\mathrm{y}=4,5,6$; etc. <br> AgingTrend is from Global Assumptions!C22 |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AB164:AU193 | Aggregate Standard Lives Expense Levels by Cohort $\left(\operatorname{AggExp}_{z, \mathrm{y}(\mathrm{st})}\right)$ |  |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AX164:BQ193 | Aggregate Impaired Lives Expense Levels by Cohort $\left(\operatorname{AggExp}_{z, y(\text { im }}\right)$ | PoolingDur is from IBS Assump DUR pooling!E3 Inflation is from Global Assumptions!B64 |  |
| BT164:CM193 | Aggregate Average Expense Levels by Cohort |  |  |
| CP164:CP193 | Aggregate Enrollment of Standard Lives by Projection Year $\left(\operatorname{Aggl}_{z(\mathrm{st})}\right)$ | $=\sum_{\mathrm{y}=1}^{20} \mathrm{Aggl}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}$ |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| CP194 | Aggregate Enrollment of Standard Lives | $=\sum_{z=1}^{30} \operatorname{Aggl}_{Z(\mathrm{st})}$ |  |
| CQ164:CQ193 | Aggregate Premium of Standard Lives by Projection Year (AggPremium $\left._{z(\mathrm{stt}}\right)$ | $=\left(\sum_{\mathrm{y}=1}^{20} \operatorname{Aggl}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \text { AggAgeAdjPremRate }_{\mathrm{z}, \mathrm{y}}\right) * 12$ |  |
| CQ194 | Aggregate Premium of Standard Lives <br> (AggPremium $_{\text {st }}$ ) | $=\sum_{\mathrm{z}=1}^{30} \text { AggPremium }_{\mathrm{z}(\mathrm{st})}$ |  |
| CR164:CR193 | Aggregate Claims of Standard Lives by Projection Year (AggClaims ${ }_{z(s t)}$ ) | $=\left(\sum_{\mathrm{y}=1}^{20} \operatorname{Aggl}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \operatorname{AggClaims}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}\right) * 12$ |  |
| CR194 | Aggregate Claims of Standard Lives (AggClaims ${ }_{\mathrm{st}}$ ) | $=\sum_{\mathrm{z}=1}^{30} \text { AggClaims }_{\mathrm{z}(\mathrm{st})}$ |  |
| CS164:CS193 | Aggregate Loss Ratio by Projection Year for Standard Lives | $=$ AggClaims $_{\text {z(st) }} /$ AggPremium $_{\text {z(st) }}$ |  |
| CS194 | Aggregate Loss Ratio for Standard Lives | $=$ AggClaims $_{\text {st }} /$ AggPremium $_{\text {st }}$ |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| CV164:CV193 | Aggregate Enrollment of Impaired Lives by Projection Year $\left(\right.$ Aggl $\left._{z(i m)}\right)$ | $=\sum_{\mathrm{y}=1}^{20} \operatorname{Aggl}_{z, \mathrm{y}(\mathrm{im})}$ |  |
| CV194 | Aggregate Enrollment of Impaired Lives | $=\sum_{\mathrm{z}=1}^{30} \operatorname{Aggl}_{\mathrm{z}(\mathrm{im})}$ |  |
| CW164:CW193 | Aggregate Premium of Impaired Lives by Projection Year (AggPremium ${ }_{z(\mathrm{im})}$ ) | $=\left(\sum_{\mathrm{y}=1}^{20} \operatorname{Aggl}_{\mathrm{z}, \mathrm{y}(\mathrm{im})} * \text { AggAgeAdjPremRate }_{\mathrm{z}, \mathrm{y}}\right) * 12$ |  |
| CW194 | Aggregate Premium of Impaired Lives <br> (AggPremium $_{\mathrm{im}}$ ) | $=\sum_{\mathrm{z}=1}^{30} \text { AggPremium }_{\mathrm{z}(\mathrm{im})}$ |  |
| CX164:CX193 | Aggregate Claims of Impaired Lives by Projection Year (AggClaims ${ }_{z(i m)}$ ) | $=\left(\sum_{\mathrm{y}=1}^{20} \operatorname{Aggl}_{z, \mathrm{y}(\mathrm{st})} * \text { AggClaims }_{\mathrm{z}, \mathrm{y}(\mathrm{im})}\right) * 12$ |  |
| CX194 | Aggregate Claims of Impaired Lives (AggClaims ${ }_{i m}$ ) | $=\sum_{\mathrm{z}=1}^{30} \text { AggClaims }_{\mathrm{z}(\mathrm{im})}$ |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| CY165:CY193 | Aggregate Loss Ratio by Projection Year for Impaired Lives | $=$ AggClaims $_{\text {z(im) }} /$ AggPremium $_{\text {z(im) }}$ | Formula applies only for $\mathrm{z}=2,3,4, \ldots, 30$ |
| CY194 | Aggregate Loss Ratio for Impaired Lives | $=$ AggClaims $_{\text {im }} /$ AggPremium $_{\text {im }}$ |  |
| DJ159 | Trend Scenario Number | From Global Assumptions!G102 |  |
| DN159 | Duration at Which Pooling Begins | From IBS Assump DUR pooling!E3 |  |
| DA164:DA193 | Aggregate Enrollment by Projection Year $\left(\mathrm{Aggl}_{\mathrm{z}}\right)$ | $=\operatorname{Aggl}_{\text {(st) }}+\operatorname{Aggl}_{\mathrm{z}(\mathrm{im})}$ |  |
| DA194 | Aggregate Enrollment | $=\sum_{\mathrm{z}=1}^{30} \mathrm{Aggl}_{\mathrm{z}}$ |  |
| DB164:DB193 | Aggregate Premium by Projection Year (AggPremium ${ }_{z}$ ) | $=$ AggPremium $_{\text {z(st) }}+$ AggPremium $_{\text {z(im) }}$ |  |
| DB194 | Aggregate Premium (AggPremium) | $=\sum_{\mathrm{z}=1}^{30} \text { AggPremium }_{\mathrm{z}}$ |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DC164:DC193 | Aggregate Premium PMPM by Projection Year | $=\operatorname{AggPremium}_{z} / \mathrm{Aggl}_{\mathrm{z}} / 12$ |  |
| DC194 | Aggregate Premium PMPM | = AggPremium / Aggl / 12 |  |
| DD164:DD193 | Aggregate Claims by Projection Year <br> (AggClaims ${ }_{z}$ ) | $=$ AggClaims $_{\text {z(st) }}+$ AggClaims $_{\text {z(im) }}$ |  |
| DD194 | Aggregate Claims (AggClaims) | $=\sum_{\mathrm{z}=1}^{30} \text { AggClaims }_{\mathrm{z}}$ |  |
| DE164:DE193 | Aggregate Claims PMPM by Projection Year | $=$ AggClaims $_{\text {z }} / \mathrm{Aggl}_{\mathrm{z}} / 12$ |  |
| DE194 | Aggregate Claims PMPM | = AggClaims / Aggl / 12 |  |
| DF164:DF193 | Aggregate Loss Ratio by Projection Year $\left(\mathrm{AggLR}_{\mathrm{z}}\right)$ | $=$ AggClaims $_{\text {z }} /$ AggPremium $_{\text {z }}$ |  |
| DF194 | Aggregate Loss Ratio | = AggClaims / AggPremium |  |
| DG164:DG193 | Aggregate Expected Loss Ratio by Projection Year (AggExpectedLR ${ }_{z}$ ) | These cells are currently blank. |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DH164:DH193 | Aggregate Actual to Expected Loss Ratio by Projection Year | $=$ AggLR $_{\mathrm{z}} /$ AggExpectedLR $_{\text {z }}$ | Currently produces \#DIV/0! Errors because the expected loss ratios in DG164:DG193 are blank. |
| DI164:DI193 | Aggregate Rolling TwoYear Loss Ratio |  AggClaims $_{1} /$ AggPremium $_{1}$, $\mathrm{z}=1$ <br>  $\left(\right.$ AggClaims $_{z-1}+$ AggClaims $\left._{z}\right) /$  <br>  $\left(\right.$ AggPremium $_{z-1}+$ AggPremium $\left._{z}\right)$, $\mathrm{z}=2,3,4, \ldots, 30$ |  |
| DJ164:DJ193 | Aggregate Premium Less Aggregate Claims by Projection Year (AggPminusAggC ${ }_{z}$ ) | $=$ AggPremium $_{\text {z }}-$ AggClaims $_{\text {z }}$ |  |
| DJ194 | Aggregate Premium Less Aggregate Claims | = AggPremium - AggClaims |  |
| DK164:DK193 | Aggregate Expenses by Projection Year $\left(\mathrm{AggExp}_{z}\right)$ | $=12 *\left[\sum_{\mathrm{y}=1}^{20}\left(\operatorname{Aggl}_{\mathrm{z}(\mathrm{st})} * \operatorname{AggExp}_{\mathrm{z}(\mathrm{st})}\right)+\sum_{\mathrm{y}=1}^{20}\left(\operatorname{Aggl}_{\mathrm{z}(\mathrm{im})} * \operatorname{AggExp}_{z(\mathrm{im})}\right)\right]$ |  |
| DK194 | Aggregate Expenses (AggExp) | $=\sum_{\mathrm{z}=1}^{30} \operatorname{AggExp}_{\mathrm{z}}$ |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DL164:DL193 | Aggregate Expense Ratio by Projection Year | $=$ AggExp $_{\text {z }} /$ AggPremium $_{\text {z }}$ |  |
| DL194 | Aggregate Expense Ratio | = AggExp / AggPremium |  |
| DM164:DM193 | Aggregate Gain by Projection Year $\left(\right.$ AggGain $\left._{z}\right)$ | $=$ AggPremium $_{\mathrm{z}}-$ AggClaims $_{\mathrm{z}}-$ AggExp $_{\mathrm{z}}$ |  |
| DM194 | Aggregate Gain (AggGain) | $=\sum_{\mathrm{z}=1}^{30} \mathrm{AggGain}_{\mathrm{z}}$ |  |
| DN164:DN193 | Aggregate Gain as a Percentage of Aggregate Premium by Projection Year | $=$ AggGain $_{\text {z }} /$ AggPremium $_{\text {z }}$ |  |
| DN194 | Aggregate Gain as a Percentage of Aggregate Premium | = AggGain / AggPremium |  |
| DO164:DO193 | Aggregate Risk-Based Capital by Projection Year $\left(\mathrm{AggRBC}_{z}\right)$ | $=\text { AggPremium }_{\mathrm{z}} * \text { RBC\% }$ <br> RBC\% is from Global Assumptions!D83 |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DP164:DP193 | Aggregate Opportunity Cost of Capital by Projection Year $\left(\mathrm{AggOCC}_{z}\right)$ | $=-\operatorname{AggRBC}_{\mathrm{z}} * \mathrm{OCC} \%$ <br> OCC\% is from Global Assumptions!D84 |  |
| DP194 | Aggregate Opportunity Cost of Capital | $=\sum_{z=1}^{30} \operatorname{AggOCC}_{z}$ |  |
| DQ164:DQ193 | Aggregate Economic Gain by Projection Year $\left(\right.$ AggEconGain $\left._{z}\right)$ | $=$ AggGain $_{\mathrm{z}}+\mathrm{OCC}_{\mathrm{z}}$ |  |
| DQ194 | Aggregate Economic Gain | $=\sum_{\mathrm{z}=1}^{30} \text { AggEconGain }_{\mathrm{z}}$ |  |
| DR164:DR193 | Market New Business Rate | $=$ MarketRate $_{\text {z }}$ | The values in cells DR164:DV193 are duplicate copies of values calculated elsewhere; they are repeated here for convenience. |
| DS164:DS193 | Global Company New Business Rate | $=$ GlobalComNewBusnRate $_{\mathrm{z}}$ |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DT164:DT193 | Implemented Rate Increase for New Business | $=\text { ImpRateIncNew }_{\mathrm{z}}$ |  |
| DT194 | Average Rate Increase | $=\sum_{\mathrm{z}=2}^{30} \text { ImpRateIncNew } / 29$ |  |
| DT195 | Minimum Rate Increase | $=\min \left(\operatorname{MinRI}_{1}, \operatorname{MinRI}_{2}, \operatorname{MinRI}_{3}, \operatorname{MinRI}_{4}, \text { MinRI }_{5}\right)$ <br> MinRI $_{\mathrm{b}}$ are from cell DT277 of IBS-1D, IBS-2D, IBS-3D, IBS-4D, and IBS-5D |  |
| DT196 | Maximum Rate Increase | $=\max \left(\text { MaxRI }_{1}, \text { MaxRI }_{2}, \text { MaxRI }_{3}, \text { MaxRI }_{4}, \text { MaxRI }_{5}\right)$ <br> MaxRI $_{\mathrm{b}}$ are from cell DT278 of IBS-1D, IBS-2D, IBS-3D, IBS-4D, and IBS-5D |  |
| DU164:DU193 | Implemented Rate Increase for Renewal Business | $=$ ImpRateIncRen $_{\text {z }}$ |  |
| DV164:DV183 | Aggregate New Business Sales by Projection Year | $=$ AggSales $_{\text {z,z }}$ | Formula applies only for $\mathrm{z}=1,2,3, \ldots, 20$. |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DB197 | Present Value of Aggregate Premium (PVAggPremium) | $=\mathrm{NPV}_{\text {int }}\left(\mathrm{AggPremium}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ | For all of the following present value calculations, int is from Global <br> Assumptions!B63, and the present values are taken over $\mathrm{z}=1,2,3$, ..., 30 . |
| DD197 | Present Value of Aggregate Claims (PVAggClaims) | $=\mathrm{NPV}_{\mathrm{int}}\left(\text { AggClaims }_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DIJ97 | Present Value of Aggregate <br> Premium Less Aggregate Claims <br> (PVAggPminusAggC) | $=N P V_{\text {int }}\left(\right.$ AggPminusAggC $\left.{ }_{z}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DK197 | Present Value of Aggregate Expenses <br> (PVAggExp) | $=N P V_{\text {int }}\left(\operatorname{AggExp}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DM197 | Present Value of Aggregate Gain (PVAggGain) | $=N P V_{\text {int }}\left(\right.$ AggGain $\left.^{\prime}\right) * \sqrt{1+\mathrm{int}}$ |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| DP197 | Present Value of Aggregate <br> Opportunity Cost of Capital <br> (PVAggOCC) | $=\mathrm{NPV}_{\text {int }}\left(\mathrm{AggOCC}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DQ197 | Present Value of Aggregate <br> Economic Gain <br> (PVAggEconGain) | $=\mathrm{NPV}_{\text {int }}\left(\right.$ AggEconGain $\left._{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DB198 | Present Value of Aggregate <br> Premium as a Percentage of <br> Present Value of Aggregate <br> Premium | $=$ PVAggPremium / PVAggPremium | Identically equal to |
| DD198 | Present Value of Aggregate <br> Claims as a Percentage of <br> Present Value of Aggregate <br> Premium | $=$ PVAggClaims / PVAggPremium |  |
| DJ198 | Present Value of Aggregate <br> Premium Less Aggregate <br> Claims as a Percentage of <br> Present Value of Aggregate <br> Premium | $=$ PVAggPminusAggC / PVAggPremium |  |
| DK198 | Present Value of Aggregate <br> Expenses as a Percentage of <br> Present Value of Aggregate <br> Premium | $=$ PVAggExp / PVAggPremium |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| DM198 | Present Value of Aggregate <br> Gain as a Percentage of <br> Present Value of Aggregate <br> Premium | $=$ PVAggGain / PVAggPremium |  |
| DP198 | Present Value of Aggregate <br> Opportunity Cost of Capital <br> as a Percentage of Present <br> Value of Aggregate <br> Premium | $=$ PVAggOCC / PVAggPremium |  |
| DQ198 | Present Value of Aggregate <br> Economic Gain as a <br> Percentage of Present Value <br> of Aggregate Premium | $=$ PVAggEconGain / PVAggPremium |  |
| DQ199 | Sum of Present Value of <br> Each Block's Aggregate <br> Economic Gain | $=\sum_{\text {b=1 }}^{5}$ AggEconGain ${ }_{b}$ |  |
| BT206:CM235 | Duration Identification <br> (DurID) | $=$ max(x, 0) | This and subsequent <br> formulas in this tab are <br> used only to verify that <br> the results above are <br> correct. |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| CP206:CP235 | Alternate Calculation of Aggregate Enrollment of Standard Lives by Projection Year (AltAggl $l_{\text {(stt) }}$ ) | $=\text { PoolAggl }_{\mathrm{z}(\mathrm{st})}+\sum_{\mathrm{b}=1}^{5} \text { Prepooll }_{\mathrm{z}, \mathrm{~b}(\mathrm{st})}$ | In this and subsequent formulas in this tab, parameters contained within summations are from IBS-1D, IBS-2D, IBS-3D, IBS-4D, and IBS-5D. |
| CP236 | Alternate Calculation of Aggregate Enrollment of Standard Lives | $=\sum_{\mathrm{z}=1}^{30} \operatorname{AltAggl}_{\mathrm{z}(\mathrm{st})}$ |  |
| CQ206:CQ235 | Alternate Calculation of Aggregate Premium of Standard Lives by Projection Year (AltAggPremium $_{z(\mathrm{st})}$ ) | $=\text { PoolAggPremium }_{z(\mathrm{st})}+\sum_{\mathrm{b}=1}^{5} \text { PrepoolPremium }_{\mathrm{z}, \mathrm{~b}(\mathrm{st})}$ |  |
| CQ236 | Alternate Calculation of Aggregate Premium of Standard Lives (AltAggPremium $_{\text {st }}$ ) | $=\sum_{\mathrm{z}=1}^{30} \text { AltAggPremium }_{\mathrm{z}(\mathrm{st})}$ |  |
| CR206:CR235 | Alternate Calculation of Aggregate Claims of Standard Lives by Projection Year (AltAggClaims ${ }_{z(s t)}$ ) | $=\text { PoolAggClaims }_{Z(\mathrm{st})}+\sum_{\mathrm{b}=1}^{5} \text { PrepoolClaims }_{\mathrm{z}, \mathrm{~b}(\mathrm{st})}$ |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| CR236 | Alternate Calculation of Aggregate Claims of Standard Lives (AltAggClaims ${ }_{\text {st }}$ ) | $=\sum_{\mathrm{z}=1}^{30} \text { AltAggClaims }_{\mathrm{z}(\mathrm{st})}$ |  |
| CS206:CS235 | Alternate Calculation of Aggregate Loss Ratio for Standard Lives by Projection Year | $\begin{array}{ll} =0, & \text { AltAggPremium }_{\mathcal{Z}(\mathrm{st)}}=0 \\ \text { AltAggClaims }_{z(\mathrm{st})} / \text { AltAggPremium }_{\mathrm{z}(\mathrm{st})}, & \text { AltAggPremium }_{\mathrm{z}(\mathrm{st})} \neq 0 \end{array}$ |  |
| CS236 | Alternate Calculation of Aggregate Loss Ratio for Standard Lives | $=\quad$0, AltAggPremium $_{\text {st }}=0$ <br> AltAggClaims $_{\text {st }} /$ AltAggPremium $_{\text {st }}$, AltAggPremium $_{\text {st }} \neq 0$ |  |
| CV206:CV235 | Alternate Calculation of Aggregate Enrollment of Impaired Lives by Projection Year (AltAggl $\left.{ }_{z(\text { (im })}\right)$ | $=\text { PoolAggl }_{\mathrm{z}(\mathrm{im})}+\sum_{\mathrm{b}=1}^{5} \text { Prepooll }_{\mathrm{z}, \mathrm{~b}(\mathrm{im})}$ |  |
| CV236 | Alternate Calculation of Aggregate Enrollment of Impaired Lives | $=\sum_{\mathrm{z}=1}^{30} \operatorname{AltAggl}_{\mathrm{z}(\mathrm{im})}$ |  |
| CW206:CW235 | Alternate Calculation of Aggregate Premium of Impaired Lives by Projection Year (AltAggPremium $_{\text {z(im) }}$ ) | $=\text { PoolAggPremium }_{\mathrm{z}(\mathrm{im})}+\sum_{b=1}^{5} \text { PrepoolPremium }_{\mathrm{z}, \mathrm{~b}(\mathrm{im})}$ |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| CW236 | Alternate Calculation of Aggregate Premium of Impaired Lives (AltAggPremium $_{\mathrm{im}}$ ) | $=\sum_{z=1}^{30} \text { AltAggPremium }_{z(\mathrm{im})}$ |  |  |
| CX206:CX235 | Alternate Calculation of Aggregate Claims of Impaired Lives by Projection Year (AltAggClaims ${ }_{z(\text { (im) }}$ ) | $=\text { PoolAggClaims }_{z(\mathrm{im})}+\sum_{\mathrm{b}=1}^{5} \text { PrepoolClaims }_{\mathrm{z}, \mathrm{~b}(\mathrm{im})}$ |  |  |
| CX236 | Alternate Calculation of Aggregate Claims of Impaired Lives (AltAggClaims $\mathrm{im}_{\mathrm{im}}$ ) | $=\sum_{\mathrm{z}=1}^{30} \text { AltAggClaims }_{\mathrm{z}(\mathrm{im})}$ |  |  |
| CY206:CY235 | Alternate Calculation of Aggregate Loss Ratio by Projection Year for Impaired Lives | $\begin{aligned} \hline= & 0, \\ & \text { AltAggClaims }_{z(\mathrm{im})} / \text { AltAggPremium }_{z(\mathrm{im})}, \end{aligned}$ | $\begin{aligned} \text { AltAggPremium }_{z(\mathrm{im})} & =0 \\ \text { AltaggPremium }_{z(\mathrm{im})} & \neq 0 \end{aligned}$ |  |
| CX236 | Alternate Calculation of Aggregate Loss Ratio for Impaired Lives | $\begin{array}{ll} = & 0, \\ & \text { AltAggClaims }_{\mathrm{im}} / \text { AltAggPremium }_{\mathrm{im}}, \end{array}$ | $\begin{aligned} \text { AltAggPremium }_{\mathrm{im}} & =0 \\ \text { AltAggPremium }_{\mathrm{im}} & =0 \end{aligned}$ |  |
| DJ201 | Trend Scenario Number | From Global Assumptions!G102 |  |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| DN201 | Duration at Which Pooling Begins | From IBS Assump DUR pooling!E3 |  |  |
| DA206:DA235 | Alternate Calculation of Aggregate Enrollment by Projection Year ( $\mathrm{AltAggl}_{z}$ ) | $=\operatorname{AltAggl~}_{\text {Z }}^{\text {(st) }}$ $+\operatorname{AltAggl~}_{\text {z(im) }}$ |  |  |
| DA236 | Alternate Calculation of Aggregate Enrollment (AltAggl) | $=\sum_{\mathrm{z}=1}^{30} \mathrm{AltAggl}_{\mathrm{z}}$ |  |  |
| DB206:DB235 | Alternate Calculation of Aggregate Premium by Projection Year (AltAggPremium ${ }_{z}$ ) | $=$ AltAggPremium $_{\text {z(st) }}+$ AltAggPremium $_{\text {z(im) }}$ |  |  |
| DB236 | Alternate Calculation of Aggregate Premium <br> (AltAggPremium) | $=\sum_{z=1}^{30} \text { AltAggPremium }_{z}$ |  |  |
| DC206:DC235 | Alternate Calculation of Aggregate Premium PMPM by Projection Year | $\begin{array}{ll} = & 0, \\ & \text { AltAggPremium }_{z} / \text { AltAggl }_{z} / 12, \end{array}$ | $\begin{aligned} \operatorname{AltAggl}_{z} & =0 \\ \operatorname{AltAggl}_{z} & \neq 0 \end{aligned}$ |  |
| DC236 | Alternate Calculation of Aggregate Premium PMPM | $\begin{array}{ll} =\quad 0, \\ & \text { AltAggPremium / AltAggl / 12, } \end{array}$ | $\begin{aligned} & \text { AltAggl }=0 \\ & \text { AltAggl }=0 \end{aligned}$ |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| DD206:DD235 | Alternate Calculation of Aggregate Claims by Projection Year (AltAggClaims ${ }_{z}$ ) | $=$ AltAggClaims $_{\text {z(st) }}+$ AltAggClaims $_{\text {z(im) }}$ |  |  |
| DD236 | Alternate Calculation of Aggregate Claims <br> (AltAggClaims) | $=\sum_{\mathrm{z}=1}^{30} \text { AltAggClaims }_{\mathrm{z}}$ |  |  |
| DE206:DE235 | Alternate Calculation of Aggregate Claims PMPM by Projection Year | $\begin{aligned} =\quad & 0, \\ & \text { AltAggClaims }_{z} / \text { AltAggl }_{z} / 12, \end{aligned}$ | $\begin{aligned} & \text { AltAggl }_{\mathrm{Z}}=0 \\ & \text { AltAggl } \end{aligned}$ |  |
| DE236 | Alternate Calculation of Aggregate Claims PMPM | $\begin{aligned} \hline= & 0, \\ & \text { AltAggClaims / AltAggl / 12, } \end{aligned}$ | $\begin{aligned} & \text { AltAggl }=0 \\ & \text { AltAggl }=0 \end{aligned}$ |  |
| DF206:DF235 | Alternate Calculation of Aggregate Loss Ratio by Projection Year (AltAggLR ${ }_{z}$ ) | $\begin{aligned} \hline= & 0, \\ & \text { AltAggClaims }_{z} / \text { AltAggPremium }_{z}, \end{aligned}$ | $\begin{aligned} & \text { AltAggPremium }_{z}=0 \\ & \text { AltAggPremium }_{z} \neq 0 \end{aligned}$ |  |
| DF236 | Alternate Calculation of Aggregate Loss Ratio | $\begin{aligned} \hline= & 0, \\ & \text { AltAggClaims / AltAggPremium, } \end{aligned}$ | $\begin{aligned} & \text { AltAggPremium }=0 \\ & \text { AltAggPremium }=0 \end{aligned}$ |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| DJ206:DJ235 | Alternate Calculation of <br> Aggregate Premium Less <br> Aggregate Claims by <br> Projection Year <br> (AltAggPminusAggC $\mathrm{C}_{\mathrm{z}}$ ) | $=$ AltAggPremium $_{\mathrm{z}}-$ AltAggClaims $_{\mathrm{z}}$ |  |  |
| DJ236 | Alternate Calculation of Aggregate Premium Less Aggregate Claims | = AltAggPremium - AltAggClaims |  |  |
| DK206:DK235 | Alternate Calculation of Aggregate Expenses by Projection Year (AltAggExp ${ }_{z}$ ) | $=\text { PoolAggExpense }_{\mathrm{z}}+\sum_{\mathrm{b}=1}^{5} \text { PrepoolExpense }_{\mathrm{z}, \mathrm{~b}}$ |  |  |
| DK236 | Alternate Calculation of Aggregate Expenses (AltAggExp) | $=\sum_{z=1}^{30} \text { AltAggExp }_{z}$ |  |  |
| DL206:DL235 | Alternate Calculation of Aggregate Expense Ratio by Projection Year | $\begin{array}{ll} =\quad 0, \\ & \text { AltAggExp }_{\mathrm{z}} / \text { AltAggPremium }_{\mathrm{z}}, \end{array}$ | $\begin{aligned} \text { AltAggPremium }_{z} & =0 \\ \text { AltAggPremium }_{z} & \neq 0 \end{aligned}$ |  |
| DL236 | Alternate Calculation of Aggregate Expense Ratio | $\begin{aligned} =\quad & 0, \\ & \text { AltAggExp } / \text { AltAggPremium, } \end{aligned}$ | $\begin{aligned} & \text { AltAggPremium }=0 \\ & \text { AltAggPremium }=0 \end{aligned}$ |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| DM206:DM235 | Alternate Calculation of Aggregate Gain by Projection Year (AltAggGain ${ }_{z}$ ) | $=\text { AltAggPremium }_{z}-\text { AltAggClaims }_{z}-\text { AltAggExp }_{z}$ |  |  |
| DM236 | Alternate Calculation of Aggregate Gain (AltAggGain) | $=\sum_{\mathrm{z}=1}^{30} \text { AltAggGain }_{\mathrm{z}}$ |  |  |
| DN206:DN235 | Alternate Calculation of Aggregate Gain as a Percentage of Aggregate Premium by Projection Year | $\begin{aligned} &=\quad 0, \\ & \text { AltAggGain }_{\mathrm{z}} / \text { AltAggPremium }_{\mathrm{Z}}, \end{aligned}$ | $\begin{aligned} & \text { AltAggPremium }_{z}=0 \\ & \text { AltAggPremium }_{\mathrm{z}} \neq 0 \end{aligned}$ |  |
| DN236 | Alternate Calculation of Aggregate Gain as a Percentage of Aggregate Premium | $\begin{aligned} = & 0, \\ & \text { AltAggGain / AltAggPremium, } \end{aligned}$ | $\begin{aligned} \text { AltAggPremium } & =0 \\ \text { AltAggPremium } & =0 \end{aligned}$ |  |
| DO206:DO235 | Alternate Calculation of Aggregate Risk-Based Capital by Projection Year (AltAggRBC ${ }_{z}$ ) | $=\operatorname{PoolAggRBC}_{z}+\sum_{b=1}^{5} \text { PrepoolRBC }_{\mathrm{z}, \mathrm{~b}}$ |  |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DP206:DP235 | Alternate Calculation of Aggregate Opportunity Cost of Capital by Projection Year <br> (AltAggOCC $C_{z}$ ) | $=\text { PoolAggOCC }_{z}+\sum_{b=1}^{5} \text { PrepoolOCC }_{z, b}$ |  |
| DP236 | Alternate Calculation of Aggregate Opportunity Cost of Capital | $=\sum_{z=1}^{30} \text { AltaggOCC }_{z}$ |  |
| DQ206:DQ235 | Alternate Calculation of Aggregate Economic Gain by Projection Year (AltAggEconGain ${ }_{z}$ ) | $=$ AltAggGain $_{\mathrm{z}}+\mathrm{OCC}_{\mathrm{z}}$ |  |
| DQ236 | Alternate Calculation of Aggregate Economic Gain | $=\sum_{z=1}^{30} \text { AltAggGain }_{z}$ |  |
| DR206:DR235 | Market New Business Rate | $=$ MarketRate $_{\text {z }}$ | The values in cells DR164:DV193 are duplicate copies of values calculated elsewhere; they are repeated here for convenience. |
| DS206:DS235 | Global Company New Business Rate | $=$ GlobalComNewBusnRate $_{\mathrm{z}}$ |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DT206:DT235 | Implemented Rate Increase for New Business | = ImpRateIncNew ${ }_{\text {z }}$ |  |
| DT236 | Average Rate Increase | $=\sum_{z=2}^{30} \operatorname{ImpRateIncNew}$ |  |
| DT237 | Minimum Rate Increase | $=\min \left(\operatorname{MinRI}_{1}, \text { MinRI }_{2}, \operatorname{MinRI}_{3}, \operatorname{MinRI}_{4}, \text { MinRI }_{5}\right)$ <br> MinRI $_{\mathrm{b}}$ are from cell DT277 of IBS-1D, IBS-2D, IBS-3D, IBS-4D, and IBS-5D |  |
| DT238 | Maximum Rate Increase | $=\max \left(\operatorname{MaxRI}_{1}, \text { MaxRI }_{2}, \text { MaxRI }_{3}, \text { MaxRI }_{4}, \text { MaxRI }_{5}\right)$ <br> MaxRI $_{\mathrm{b}}$ are from cell DT278 of IBS-1D, IBS-2D, IBS-3D, IBS-4D, and IBS-5D |  |
| DU206:DU235 | Implemented Rate Increase for Renewal Business | $=$ ImpRateIncRen $_{\text {z }}$ |  |
| DV206:DV225 | Aggregate New Business Sales by Projection Year (ActualSales ${ }_{z}$ ) | $=$ AggSales $_{\text {z,z }}$ | Formula applies only for $\mathrm{z}=1,2,3, \ldots, 20$. |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DB239 | Present Value of Alternate Calculation of Aggregate Premium (PVAltAggPremium) | $=\mathrm{NPV}_{\text {int }}\left(\right.$ AltAggPremium $\left._{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ | For all of the following present value calculations, int is from Global <br> Assumptions!B63, and the present values are taken over $\mathrm{z}=1,2,3$, ..., 30 . |
| DD239 | Present Value of Alternate Calculation of Aggregate Claims <br> (PVAltAggClaims) | $=\mathrm{NPV}_{\text {int }}\left(\right.$ AltAggClaims $\left._{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DJ239 | Present Value of Alternate Calculation of Aggregate Premium Less Alternate Calculation of Aggregate Claims <br> (PVAltAggPminusAlt <br> AggC) | $=\mathrm{NPV}_{\text {int }}\left(\text { AltAggPminusAltAggC }{ }_{z}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DK239 | Present Value of Alternate Calculation of Aggregate Expenses (PVAltAggExp) | $=N P V_{\text {int }}\left(\operatorname{AltAggExp}_{z}\right) * \sqrt{1+\mathrm{int}}$ |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| DM239 | Present Value of Alternate <br> Calculation of Aggregate <br> Gain <br> (PVAltAggGain) | $=\mathrm{NPV}_{\mathrm{int}}\left(\right.$ AltAggGain $\left._{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DP239 | Present Value of Alternate <br> Calculation of Aggregate <br> Opportunity Cost of Capital <br> $($ PVAltAggOCC $)$ | $=\mathrm{NPV}_{\mathrm{int}}\left(\right.$ AltAggOCC $\left._{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DQ239 | Present Value of Alternate <br> Calculation of Aggregate <br> Economic Gain <br> (PVAltAggEconGain) | $=\mathrm{NPV}_{\mathrm{int}}\left(\right.$ AltAggEconGain $\left._{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DB240 | Present Value of Alternate <br> Calculation of Aggregate <br> Premium as a Percentage of <br> Present Value of Alternate <br> Calculation of Aggregate <br> Premium | $=$ PVAltAggPremium / PVAltAggPremium | Identically equal to |
| $100.0 \%$. |  |  |  |
| DD240 | Present Value of Alternate <br> Calculation of Aggregate <br> Claims as a Percentage of <br> Present Value of Alternate <br> Calculation of Aggregate <br> Premium | $=$ PVAltAggClaims / PVAltAggPremium |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| DJ240 | Present Value of Alternate <br> Calculation of Aggregate <br> Premium Less Alternate <br> Calculation of Aggregate <br> Claims as a Percentage of <br> Present Value of Alternate <br> Calculation of Aggregate <br> Premium |  |  |
| DK240 | Present Value of Alternate <br> Calculation of Aggregate <br> Expenses as a Percentage of <br> Present Value of Alternate <br> Calculation of Aggregate <br> Premium | $=$ PVAltAggExp / PVAltAggPremium |  |
| DM240 | Present Value of Alternate <br> Calculation of Aggregate <br> Gain as a Percentage of <br> Present Value of Alternate <br> Calculation of Aggregate <br> Premium | $=$ PVAltAggGain / PVAltAggPremium |  |
| DP240 | Present Value of Alternate <br> Calculation of Aggregate <br> Opportunity Cost of Capital <br> as a Percentage of Present <br> Value of Alternate <br> Calculation of Aggregate <br> Premium | $=$ PVAltAggOCC / PVAltAggPremium |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DQ240 | Present Value of Alternate Calculation of Aggregate Economic Gain as a Percentage of Present Value of Alternate Calculation of Aggregate Premium | = PVAltAggEconGain / PVAltAggPremium |  |
| BT246:CM275 | Duration Use Indicator (DurFlag ${ }_{z, y}$ ) | $\begin{array}{rrr} 0, & \mathrm{x}<1 \text { or }(\mathrm{x} \geq 1 \text { and DurID }<\text { PoolingDur }) \\ 1, & \text { otherwise } \end{array}$ |  |
| CP246:CP275 | Aggregate Enrollment of Standard Lives by Projection Year During Pooling (PoolAggl $\left.{ }_{z(5 \mathrm{st})}\right)$ | $=\sum_{\mathrm{y}=1}^{20} \operatorname{Aggl}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \text { DurFlag }_{\mathrm{z}, \mathrm{y}}$ |  |
| CP276 | Aggregate Enrollment of Standard Lives During Pooling | $=\sum_{\mathrm{z}=1}^{30} \mathrm{Pool}^{2 g g l_{\mathrm{Z}(\mathrm{st})}}$ |  |
| CQ246:CQ275 | Aggregate Premium of Standard Lives by <br> Projection Year During Pooling <br> (PoolAggPremium $_{z(\mathrm{stt})}$ ) | $=\left(\sum_{\mathrm{y}=1}^{20} \operatorname{Aggl}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \text { AggAgeAdjPremRate }_{\mathrm{z}, \mathrm{y}} * \text { DurFlag }_{\mathrm{z}, \mathrm{y}}\right) * 12$ |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| CQ276 | Aggregate Premium of Standard Lives During Pooling (PoolAggPremium $_{\mathrm{st}}$ ) | $=\sum_{z=1}^{30} \text { PoolAggPremium }{ }_{z(\mathrm{st})}$ |  |
| CR246:CR275 | Aggregate Claims of Standard Lives by Projection Year During Pooling (PoolAggClaims ${ }_{z(s t)}$ ) | $=\left(\sum_{\mathrm{y}=1}^{20} \operatorname{Aggl}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \text { AggClaims }_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \text { DurFlag }_{\mathrm{z}, \mathrm{y}}\right) * 12$ |  |
| CR276 | Aggregate Claims of Standard Lives During Pooling (PoolAggClaims ${ }_{\text {st }}$ ) | $=\sum_{z=1}^{30} \text { PoolAggClaims }_{z(\mathrm{st})}$ |  |
| CS246:CS275 | Aggregate Loss Ratio by Projection Year for Standard Lives During Pooling | $\begin{array}{lr} 0, & \text { PoolAggPremium }_{z(\mathrm{st})}=0 \\ \text { PoolAggClaims }_{\mathrm{z}(\mathrm{st})} / \text { PoolAggPremium }_{z(\mathrm{st})}, \\ & \text { PoolAggPremium }_{z(\mathrm{st})} \neq 0 \end{array}$ |  |
| CS276 | Aggregate Loss Ratio for Standard Lives During Pooling | $=$0, PoolAggPremium $_{\text {st }}=0$ <br> PoolAggClaims $_{\text {st }} /$ PoolAggPremium $_{\text {st }}$, PoolAggPremium $_{\text {st }} \neq 0$ |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| CV246:CV275 | Aggregate Enrollment of Impaired Lives by Projection Year During Pooling (PoolAggl $\left.l_{\text {(im) }}\right)$ | $=\sum_{\mathrm{y}=1}^{20} \mathrm{Aggl}_{\mathrm{z}, \mathrm{y}(\mathrm{im})} * \text { DurFlag }_{\mathrm{z}, \mathrm{y}}$ |  |
| CV276 | Aggregate Enrollment of Impaired Lives During Pooling | $=\sum_{z=1}^{30} \text { Pool }^{2 g g l} l_{z(\mathrm{im})}$ |  |
| CW246:CW275 | Aggregate Premium of Impaired Lives by Projection Year During Pooling (PoolAggPremium $_{z(\mathrm{im})}$ ) | $=\left(\sum_{\mathrm{y}=1}^{20} \operatorname{Aggl}_{\mathrm{z}, \mathrm{y}(\mathrm{im})} * \text { AggAgeAdjPremRate }_{\mathrm{z}, \mathrm{y}} * \text { DurFlag }_{\mathrm{z}, \mathrm{y}}\right) * 12$ |  |
| CW276 | Aggregate Premium of Impaired Lives During Pooling (PoolAggPremium $_{\text {im }}$ ) | $=\sum_{z=1}^{30} \text { PoolAggPremium }{ }_{z(\text { (im })}$ |  |
| CX246:CX275 | Aggregate Claims of Impaired Lives by Projection Year During Pooling (PoolAggClaims ${ }_{z(i m)}$ ) | $=\left(\sum_{\mathrm{y}=1}^{20} \operatorname{Aggl}_{\mathrm{z}, \mathrm{y}(\mathrm{~m})} * \text { AggClaims }_{\mathrm{z}, \mathrm{y}(\mathrm{~m})} * \text { DurFlag }_{\mathrm{z}, \mathrm{y}}\right) * 12$ |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| CX276 | Aggregate Claims of Impaired Lives During Pooling (PoolAggClaims ${ }_{i m}$ ) | $=\sum_{\mathrm{z}=1}^{30} \text { PoolAggClaims }_{\mathrm{z}(\mathrm{im})}$ |  |
| CY246:CY275 | Aggregate Loss Ratio by Projection Year for Impaired Lives During Pooling | $\begin{array}{lc} 0, & \text { PoolAggPremium }_{z(\mathrm{im})}=0 \\ \text { PoolAggClaims }_{z(\mathrm{im})} / \text { PoolAggPremium }_{z(\mathrm{im}),} \\ \text { PoolAggPremium }_{z(\mathrm{im})} \neq 0 \end{array}$ |  |
| CY276 | Aggregate Loss Ratio for Impaired Lives During Pooling | $=\begin{array}{ll} 0, & \text { PoolAggPremium }_{\mathrm{im}}=0 \\ \text { PoolAggClaims }_{\mathrm{im}} / \text { PoolAggPremium }_{\mathrm{im}}, & \text { PoolAggPremium }_{\mathrm{im}} \neq 0 \end{array}$ |  |
| DJ241 | Trend Scenario Number | From Global Assumptions!G102 |  |
| DN241 | Duration at Which Pooling Begins | From IBS Assump DUR pooling!E3 |  |
| DA246:DA275 | Aggregate Enrollment by Projection Year During Pooling (PoolAggl ${ }_{z}$ ) | $=$ PoolAggl $\mathrm{Z}_{\text {(st) }}+$ PoolAggl $_{\text {z(im) }}$ |  |
| DA276 | Aggregate Enrollment During Pooling | $=\sum_{\mathrm{z}=1}^{30} \text { PoolAggl }_{z}$ |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| DB246:DB275 | Aggregate Premium by Projection Year During Pooling (PoolAggPremium ${ }_{z}$ ) | $=$ PoolAggPremium $_{\text {z(st) }}+$ PoolAggPremium $_{\text {z(im) }}$ |  |  |
| DB276 | Aggregate Premium During Pooling <br> (PoolAggPremium) | $=\sum_{z=1}^{30} \text { PoolAggPremium }_{z}$ |  |  |
| DD246:DD275 | Aggregate Claims by Projection Year During Pooling (PoolAggClaims ${ }_{z}$ ) | $=$ PoolAggClaims $_{\text {z(st) }}+$ PoolAggClaims $_{\text {z(im) }}$ |  |  |
| DD276 | Aggregate Claims During Pooling (PoolAggClaims) | $=\sum_{\mathrm{z}=1}^{30} \text { PoolAggClaims }_{\mathrm{z}}$ |  |  |
| DE246:DE275 | Aggregate Claims PMPM by Projection Year During Pooling | $\begin{aligned} =\quad & 0, \\ & \text { PoolAggClaims }_{z} / \text { PoolAggl }_{z} / 12, \end{aligned}$ | $\begin{aligned} & \operatorname{PoolAggl}_{z}=0 \\ & \operatorname{PoolAggl}_{z} \neq 0 \end{aligned}$ |  |
| DE276 | Aggregate Claims PMPM During Pooling | $\begin{aligned} = & 0, \\ & \text { PoolAggClaims / PoolAggl / 12, } \end{aligned}$ | $\begin{aligned} & \text { PoolAggl }=0 \\ & \text { PoolAggl }=0 \end{aligned}$ |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DF246:DF275 | Aggregate Loss Ratio by Projection Year During Pooling (PoolAggLR ${ }_{z}$ ) | $=$0, PoolAggPremium $_{z}=0$ <br> PoolAggClaims $_{z} /$ PoolAggPremium $_{z}$, PoolAggPremium $_{z} \neq 0$ |  |
| DF276 | Aggregate Loss Ratio During Pooling | $=$0, PoolAggPremium $=0$ <br> PoolAggClaims / PoolAggPremium, PoolAggPremium $\neq 0$ |  |
| DG246:DG275 | Aggregate Expected Loss Ratio by Projection Year During Pooling (PoolAggExpectedLR ${ }_{z}$ ) | $=$0, $z<$ PoolingDur <br> $\operatorname{DurLR}_{\mathrm{z}}$, $\mathrm{z} \geq$ PoolingDur <br> PoolingDur is from IBS Assump DUR pooling!E3 <br> DurLR $_{z}$ is from the appropriate cell of IBS Assump DUR pooling!AE19:AE48 |  |
| DH246:DH275 | Aggregate Actual to Expected Loss Ratio by Projection Year During Pooling | $\begin{array}{ll} =0, & \text { PoolAggPremium }_{\mathrm{z}}=0 \\ \text { PoolAggLR }_{\mathrm{z}} / \text { PoolAggExpectedLR }_{\mathrm{z}}, & \text { PoolAggPremium }_{\mathrm{z}} \neq 0 \end{array}$ |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DI246:DI275 | Aggregate Rolling TwoYear Loss Ratio During Pooling | 0, (z = 1 and PoolAggPremium $\left.{ }_{1}=0\right)$ $=\quad$ or $\left(\mathrm{z}>1\right.$ and PoolAggPremium ${ }_{z-1}+$ PoolAggPremium $\left._{\mathrm{z}}=0\right)$ PoolAggClaims $_{1} /$ PoolAggPremium $_{1}$, $\mathrm{z}=1$ and PoolAggPremium ${ }_{1} \neq 0$ |  |
| DJ246:DJ275 | Aggregate Premium Less Aggregate Claims by Projection Year During Pooling <br> (PoolAggPminusAggC ${ }_{z}$ ) | $=$ PoolAggPremium $_{\mathrm{z}}-$ PoolAggClaims $_{\mathrm{z}}$ |  |
| DJ276 | Aggregate Premium Less Aggregate Claims During Pooling | = PoolAggPremium - PoolAggClaims |  |
| DK246:DK275 | Aggregate Expenses by Projection Year During Pooling (PoolAggExp ${ }_{z}$ ) | $\begin{aligned} = & 12 *\left[\sum_{i=1}^{20}\left(\operatorname{Aggl}_{z, \mathrm{i}(\mathrm{st})} * \operatorname{AggExp}_{\mathrm{z}, \mathrm{i}(\mathrm{st})} * \text { DurFlag }_{\mathrm{z}, \mathrm{i}}\right)\right. \\ & \left.+\sum_{\mathrm{j}=1}^{20}\left(\operatorname{Aggl}_{\mathrm{z}, \mathrm{j}(\mathrm{im})} * \operatorname{AggExp}_{\mathrm{z}, \mathrm{j}(\mathrm{im})} * \text { DurFlag }_{\mathrm{z}, \mathrm{j}}\right)\right] \end{aligned}$ |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| DK276 | Aggregate Expenses During Pooling <br> (PoolAggExp) | $=\sum_{z=1}^{30} \text { PoolAggExp }_{z}$ |  |  |
| DL246:DL275 | Aggregate Expense Ratio by Projection Year During Pooling | $\begin{array}{ll} = & 0, \\ & \operatorname{PoolAggExp}_{\mathrm{z}} / \text { PoolAggPremium }_{\mathrm{z}}, \end{array}$ | $\begin{aligned} & \text { PoolAggPremium }_{z}=0 \\ & \operatorname{PoolAggPremium~}_{z} \neq 0 \end{aligned}$ |  |
| DL276 | Aggregate Expense Ratio During Pooling | $\begin{aligned} \hline= & 0, \\ & \text { PoolAggExp / PoolAggPremium, } \end{aligned}$ | $\begin{array}{r} \text { PoolAggPremium }=0 \\ \text { PoolAggPremium } \neq 0 \end{array}$ |  |
| DM246:DM275 | Aggregate Gain by Projection Year During Pooling (PoolAggGain ${ }_{z}$ ) | $=$ PoolAggPremium $_{\mathrm{z}}-$ PoolAggClaims $_{\mathrm{z}}-$ PoolAggExp $_{\mathrm{z}}$ |  |  |
| DM276 | Aggregate Gain During Pooling <br> (PoolAggGain) | $=\sum_{\mathrm{z}=1}^{30} \text { PoolAggGain }_{\mathrm{z}}$ |  |  |
| DN246:DN275 | Aggregate Gain as a <br> Percentage of Aggregate <br> Premium by Projection Year <br> During Pooling | $\begin{aligned} = & 0, \\ & \text { PoolAggGain }_{z} / \text { PoolAggPremium }_{z}, \end{aligned}$ | $\begin{aligned} & \operatorname{Pool}_{\text {AggPremium }}^{z} \end{aligned}=0$ |  |
| DN276 | Aggregate Gain as a Percentage of Aggregate Premium During Pooling | $\begin{array}{ll} = & 0, \\ & \text { PoolAggGain / PoolAggPremium, } \end{array}$ | $\begin{aligned} & \operatorname{PoolAggPremium~}_{z}=0 \\ & \operatorname{Pool}^{2 g g P r e m i u m} \\ & z \end{aligned}=0$ |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DO246:DO275 | Aggregate Risk-Based Capital by Projection Year During Pooling (PoolAggRBC ${ }_{z}$ ) | $=\text { PoolAggPremium }_{z} * \text { RBC\% }$ <br> RBC\% is from Global Assumptions!D83 |  |
| DP246:DP275 | Aggregate Opportunity Cost of Capital by Projection Year During Pooling (PoolAggOCC ${ }_{z}$ ) | $=- \text { PoolAggRBC }_{z} * \text { OCC\% }^{2}$ <br> OCC\% is from Global Assumptions!D84 |  |
| DP276 | Aggregate Opportunity Cost of Capital During Pooling | $=\sum_{z=1}^{30} \text { PoolAggOCC }_{z}$ |  |
| DQ246:DQ275 | Aggregate Economic Gain by Projection Year During Pooling (PoolAggEconGain ${ }_{z}$ ) | $=$ PoolAggGain $_{\mathrm{z}}+$ PoolAggOCC $_{\text {z }}$ |  |
| DQ276 | Aggregate Economic Gain During Pooling | $=\sum_{z=1}^{30} \text { PoolAggEconGain }$ |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DB197 | Present Value of Aggregate Premium During Pooling (PVPoolAggPremium) | $=N P V_{\text {int }}\left(\right.$ PoolAggPremium $\left._{z}\right) * \sqrt{1+\text { int }}$ | For all of the following present value calculations, int is from Global Assumptions!B63, and the present values are taken over $\mathrm{z}=1,2,3$, ..., 30. |
| DD197 | Present Value of Aggregate Claims During Pooling (PVPoolAggClaims) | $=\mathrm{NPV}_{\text {int }}\left(\text { PoolAggClaims }_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DJ197 | Present Value of Aggregate Premium Less Aggregate Claims During Pooling (PVPoolAggPminusAggC) | $=\mathrm{NPV}_{\text {int }}\left(\right.$ PoolAggPminusAggC $\left.{ }_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DK197 | Present Value of Aggregate Expenses During Pooling (PVPoolAggExp) | $=\mathrm{NPV}_{\text {int }}\left(\mathrm{PoolAggExp}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DM197 | Present Value of Aggregate Gain During Pooling (PVPoolAggGain) | $=\mathrm{NPV}_{\text {int }}\left(\right.$ PoolAggGain $\left._{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| DP197 | Present Value of Aggregate <br> Opportunity Cost of Capital <br> During Pooling <br> (PVPoolAggOCC) | $=\mathrm{NPV}_{\text {int }}\left(\right.$ PoolAggOCC $\left._{z}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DQ197 | Present Value of Aggregate <br> Economic Gain During <br> Pooling <br> (PVPoolAggEconGain) | $=\mathrm{NPV}_{\text {int }}\left(\right.$ PoolAggEconGain $\left._{z}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DB198 | Present Value of Aggregate <br> Premium as a Percentage of <br> Present Value of Aggregate <br> Premium During Pooling | $=$ PVPoolAggPremium / PVPoolAggPremium | Identically equal to |
| DD198 | Present Value of Aggregate <br> Claims as a Percentage of <br> Present Value of Aggregate <br> Premium During Pooling | $=$ PVPoolAggClaims / PVPoolAggPremium |  |
| DJ198 | Present Value of Aggregate <br> Premium Less Aggregate <br> Claims as a Percentage of <br> Present Value of Aggregate <br> Premium During Pooling | $=$ PVPoolAggPminusAggC / PVPoolAggPremium |  |

## Interblock Subsidy.xls - IBS DUR pooling Summary

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| DK198 | Present Value of Aggregate <br> Expenses as a Percentage of <br> Present Value of Aggregate <br> Premium During Pooling | $=$ PVPoolAggExp / PVPoolAggPremium |  |
| DM198 | Present Value of Aggregate <br> Gain as a Percentage of <br> Present Value of Aggregate <br> Premium During Pooling | $=$ PVPoolAggGain / PVPoolAggPremium |  |
| DP198 | Present Value of Aggregate <br> Opportunity Cost of Capital <br> as a Percentage of Present <br> Value of Aggregate <br> Premium During Pooling |  |  |
| DQ198 | Present Value of Aggregate <br> Economic Gain as a <br> Percentage of Present Value <br> of Aggregate Premium <br> During Pooling | $=$ PVPoolAggEconGain / PVPoolAggPremium |  |

## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| D4 | Reference Premium (InitRefPrem) | From Global Assumptions!C24 |  |
| D5 | Initial Reference Claim Cost for Standard Lives (InitRefClaims ${ }_{\mathrm{st}}$ ) | From Global Assumptions!D49 |  |
| D6 | Initial Reference Claim Cost for Impaired Lives (InitRefClaimsim) | From Global Assumptions!D60 |  |
| B12:B41 | Base Lapse Rates for Standard Lives (Baseq $_{\text {x (st) }}$ ) | From the appropriate cell of Global Assumptions!D29:D33 |  |
| C12:C41 | Base Lapse Rates for Impaired Lives ( Baseq $_{x(\text { (im) }}$ ) | From Global Assumptions!C54 |  |
| D12:D41 | Duration Factor ( $\mathrm{DF}_{\mathrm{x}}$ ) | From the appropriate cell of Global Assumptions!B77:B81 |  |
| E12:E41 | Per Policy Expense Rates $\left(\operatorname{Exp}_{\text {Pol(x) }}\right)$ | From the appropriate cell of Global Assumptions!B70:B74 |  |

## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| F12:F41 | Percentage-of-Claims <br> Expense Rates <br> (Exp\%c(x)) | From the appropriate cell of Global Assumptions!C70:C74 |  |
| G12:G41 | Base Commission Rates $\left(\right.$ Comm $\left._{B(x)}\right)$ | From the appropriate cell of Global Assumptions!D70:D74 |  |
| H12:H41 | Renewal Commission Rates $\left(\operatorname{Comm}_{\text {R(x) }}\right)$ | From the appropriate cell of Global Assumptions!E70:E74 |  |
| I12:I41 | Other Premium-Related Expense Rates (Expoth\%p(x)) | From the appropriate cell of Global Assumptions!F70:F74 |  |
| J12:J41 | Premium Age Factor $\left(\mathrm{PAF}_{\mathrm{x}}\right)$ | $\begin{array}{llr} \hline= & 1, & x=1 \\ & \operatorname{PAF}_{x-1} *(1+\text { PremGrowthAge }), & x=2,3,4, \ldots, 30 \end{array}$ <br> PremGrowthAge is from Global Assumptions!C25 |  |
| K12:K41 | Rate of Impairment ( $\mu_{\mathrm{x}}$ ) | From the appropriate cell of Global Assumptions!E43:E47 |  |
| L12:L41 | Durational Rate Increase ( $\mathrm{DRI}_{\mathrm{x}}$ ) | From the appropriate cell of IBS Assump DUR pooling!T19:T48 |  |

## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| O12:041 | Reference Premium ( RefPrem $_{z}$ ) | $=\begin{array}{lr} \text { InitRefPrem, } \begin{array}{l} \text { RefPrem } \\ z-1 \end{array} *\left(1+\text { ActTrend }_{z-1}\right), & z=1 \\ & z=2,3,4, \ldots, 30 \end{array}$ |  |
| P12:P41 | Baseline Sales (BaseSales ${ }_{z}$ ) | From the appropriate cell of IBS Assump DUR pooling!C19:G48 |  |
| Q12:Q41 | Standard Lives Reference Claims (RefClaims $_{z(\text { stt }}$ ) | $\begin{array}{rlr} = & \text { InitRefClaims }_{\mathrm{stt}} * \text { MorbAdj }_{\mathrm{b}(\mathrm{st}),} & \mathrm{z}=1 \\ & \text { RefClaims }_{\mathrm{z}-1(\mathrm{st})} *\left(1+\text { ActTrend }_{\mathrm{z}-1}\right), & \mathrm{z}=2,3,4, \ldots, 30 \end{array}$ <br> MorbAdjb ${ }_{\text {(st) }}$ is from the appropriate cell of IBS Assump DUR pooling!O4, Q4, S4, U4, or W4 |  |
| R12:R41 | Impaired Lives Reference Claims (RefClaims $_{z(i m)}$ ) | $\begin{array}{llr} \hline= & \text { InitRefClaims }_{\text {im }} * \text { MorbAdj }_{b(i m)}, & z=1 \\ & \text { RefClaims }_{z-1(\mathrm{im})} *\left(1+\text { ActTrend }_{z-1}\right), & z=2,3,4, \ldots, 30 \end{array}$ <br> MorbAdj ${ }_{b(\text { (im) }}$ is from the appropriate cell of IBS Assump DUR pooling!P4, R4, T4, V4, or X4 |  |
| S12:S41 | Actual Trend (ActTrend ${ }_{z}$ ) | From the appropriate cell of Global Assumptions!B106:B135 |  |
| T13:T41 | Implemented Rate Increase for New Business (ImpRateIncNew ${ }_{z}$ ) | $=\min \left(\text { MaxRateInc, RegDamp } * \text { ReqRateIncNew }{ }_{z}\right)$ <br> MaxRateInc is from Global Assumptions!D100 <br> RegDamp is from the appropriate cell of Global Assumptions!D90:D99, based on the value of ReqRateIncNew ${ }_{z}$ | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$ |

## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| U13:U41 | Implemented Rate Increase for Renewal Business (ImpRateIncRen ${ }_{z}$ ) | = ImpRateIncNew ${ }_{\text {z }}$ | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$ |
| V12:V41 | Market New Business Rate (MarketRate ${ }_{z}$ ) | $\begin{array}{rlr} \hline= & \mathrm{P}_{1(\mathrm{pr})}, & \mathrm{z}=1 \\ & \text { MarketRate }_{\mathrm{z}-1} *\left(1+\text { ActTrend }_{z-1}\right), & \mathrm{z}=2,3,4, \ldots, 30 \end{array}$ <br> $\mathrm{P}_{1(\mathrm{pr})}$ is from IBS Assump DUR pooling!V19 |  |
| W12:W41 | Company New Business <br> Rate <br> (ComNewBusnRate ${ }_{z}$ ) |  |  |

## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| X13:X41 | Requested Rate Increase for New Business (ReqRateIncNew ${ }_{z}$ ) |  <br> otherwise <br> GlobalReqRateIncNew ${ }_{z}$ is from the appropriate cell of IBS DUR pooling Summary!X13:X41 <br> PoolingDur is from IBS Assump DUR pooling!E3 <br> Intro $\mathrm{Yr}_{\mathrm{b}}$ is from the appropriate cell of IBS Assump DUR pooling!D11:D15 <br> PoolingTLR ${ }_{z-2}$ is from the appropriate cell of CM-b_TLR!W19:W48, based on projection year, where $b$ is the block number <br> MaxLR is from IBS Assump DUR pooling!M5 | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$. |
| X42 | Average Requested Rate Increase for New Business Prior to Pooling | $=$ average $\left(\right.$ ReqRateIncNew ${ }_{z}$ ), where the average is taken over $\mathrm{z}=$ Intro $\mathrm{Yr}_{\mathrm{b}}$, Intro $\mathrm{Yr}_{\mathrm{b}}+1$, Intro $\mathrm{Yr}_{\mathrm{b}}+2, \ldots$, Intro $\mathrm{Yr}_{\mathrm{b}}+$ PoolingDur -3 , Intro $\mathrm{Yr}_{\mathrm{b}}+$ PoolingDur 2, Intro $_{\text {Yr }}^{\mathrm{b}}$ + PoolingDur -1 <br> Intro $\mathrm{Yr}_{\mathrm{b}}$ is from the appropriate cell of IBS Assump DUR pooling!D11:D15 <br> PoolingDur is from IBS Assump DUR pooling!E3 |  |

## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| X43 | Minimum Requested Rate Increase for New Business Prior to Pooling | $=\min \left(\right.$ ReqRateIncNew ${ }_{z}$ ), where the minimum is taken over $\mathrm{z}=$ Intro $\mathrm{Yr}_{\mathrm{b}}$, Intro $\mathrm{Yr}_{\mathrm{b}}+1$, Intro $\mathrm{Yr}_{\mathrm{b}}+2, \ldots$, Intro $\mathrm{Yr}_{\mathrm{b}}+$ PoolingDur 3, IntroYr $\mathrm{H}_{\mathrm{b}}+$ PoolingDur - 2, Intro $\mathrm{Yr}_{\mathrm{b}}+$ PoolingDur -1 <br> Intro $\mathrm{Yr}_{\mathrm{b}}$ is from the appropriate cell of IBS Assump DUR pooling!D11:D15 <br> PoolingDur is from IBS Assump DUR pooling!E3 |  |
| X44 | Maximum Requested Rate Increase for New Business Prior to Pooling | $=\max \left(\right.$ ReqRateIncNew ${ }_{z}$ ), where the maximum is taken over $\mathrm{z}=$ Intro $\mathrm{Yr}_{\mathrm{b}}$, Intro $\mathrm{Yr}_{\mathrm{b}}+1$, Intro $\mathrm{Yr}_{\mathrm{b}}+2, \ldots$, Intro $\mathrm{Yr}_{\mathrm{b}}+$ PoolingDur - 3, Intro $\mathrm{Yr}_{\mathrm{b}}+$ PoolingDur 2, IntroYr $_{\mathrm{b}}+$ PoolingDur -1 <br> Intro $\mathrm{Yr}_{\mathrm{b}}$ is from the appropriate cell of IBS Assump DUR pooling!D11:D15 <br> PoolingDur is from IBS Assump DUR pooling!E3 |  |
| Y13:Y41 | Requested Rate Increase for Renewal Business (ReqRateIncRen ${ }_{z}$ ) | $\begin{array}{rlr} \hline= & \text { ReqRateIncNew }_{\mathrm{z}}, & \mathrm{z}<{\text { PoolingDur }+ \text { Intro } \mathrm{Yr}_{\mathrm{b}}+1} \\ & \text { GlobalReqRateIncRen } \\ \mathrm{z} \end{array}, \quad \mathrm{z} \geq \text { PoolingDur + Intro } \mathrm{Yr}_{\mathrm{b}}+1$ <br> PoolingDur is from IBS Assump DUR pooling!E3 <br> Intro $\mathrm{Yr}_{\mathrm{b}}$ is from the appropriate cell of IBS Assump DUR pooling!D11:D15 <br> GlobalReqRateIncRen ${ }_{z}$ is from the appropriate cell of IBS DUR pooling Summary!Y13:Y41 | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$. |

## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AB12:AU41 | New Business Sales by Cohort (NewSales ${ }_{\text {r, }}$ ) | $0, \quad \mathrm{x} \neq 1$  <br> $=\quad \max$ $\left\{0\right.$, BaseSales $_{\mathrm{z}} *[1+$ MktPriceSens <br>  $*\left(\left(\right.\right.$ MarketRate $\left.\left.\left._{\mathrm{z}} / \operatorname{RefPrem}_{\mathrm{z}}\right)-1\right)\right][1+$ ComPriceSens <br>  $*\left(\left(\right.\right.$ ComNewBusnRate $_{\mathrm{z}} /$ MarketRate $\left.\left.\left.\left._{\mathrm{z}}\right)-1\right)\right]\right\}, \quad$ otherwise <br> MktPriceSens is from Global Assumptions!D14 <br> ComPriceSens is from Global Assumptions!D15 |  |
| AB42:AU42 | Total New Business Sales for Issue Year y | $=\sum_{z=1}^{30} \text { NewSales }_{z, y}$ |  |

## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AX12:BQ41 | Actual Lapse Rates for Standard Lives by Cohort ( $\mathrm{q}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}$ ) | 0 , $x \leq 1 \text { or BaseSales }{ }_{y}=0$ <br> $\max \left\{\mathrm{q}_{\min (\mathrm{st})}, \min \left[\mathrm{q}_{\max (\mathrm{st})}\right.\right.$, Baseq $_{\mathrm{x}-1(\mathrm{st})}+\left(\left(\right.\right.$ AgeAdjPremRate $_{\mathrm{z}, \mathrm{y}}$ <br> / AgeAdjPremRate ${ }_{z-1, \mathrm{y}}$ ) - 1 - ActTrend $_{\mathrm{z}}$ ) LapseAdjTrend $_{\text {st }}$ <br> * (((AgeAdjPremRate ${ }_{\mathrm{z}, \mathrm{y}} /$ AgeAdjMktNewBusnRate $\left.\left._{\mathrm{z}, \mathrm{y}}\right)-1\right)$ <br> $=\quad *$ LapseAdjMkt $\left._{\mathrm{st}}+1\right)-\left(\left(\left(\right.\right.\right.$ ComNewBusnRate $_{\mathrm{y}} /$ RefPrem $\left._{\mathrm{y}}\right)$ <br> $-1)$ * LapseAdjSale $\left.\left._{\mathrm{st}}\right]\right\}$, $\mathrm{x}=2,3$, or 4 and BaseSales $_{\mathrm{y}} \neq 0$ <br> $\max \left\{\mathrm{q}_{\min (\mathrm{st}),}, \min \left[\mathrm{q}_{\max (\mathrm{st})}\right.\right.$, Baseq $_{\mathrm{x}-1(\mathrm{st})}+\left(\left(\right.\right.$ AgeAdjPremRate $_{\mathrm{z}, \mathrm{y}}$ <br> / AgeAdjPremRate ${ }_{z-1, \mathrm{y}}$ ) - 1 - ActTrend $_{\mathrm{z}}$ ) LapseAdjTrend $_{\text {st }}$ <br> * (((AgeAdjPremRate $\mathrm{z}_{\mathrm{z}, \mathrm{y}}$ / AgeAdjMktNewBusnRate $\left.\mathrm{z}_{\mathrm{z}, \mathrm{y}}\right)$ - 1) <br> * LapseAdjMkt $\left.\left.\left._{\text {st }}+1\right)\right]\right\}$, <br> $\mathrm{q}_{\text {min(st) }}$ is from Global Assumptions!D40 <br> $\mathrm{q}_{\max (\mathrm{st})}$ is from Global Assumptions!D39 <br> LapseAdjTrend ${ }_{\text {st }}$ is from Global Assumptions!D36 <br> LapseAdjMkt $_{\text {st }}$ is from Global Assumptions!D37 <br> LapseAdjSale $_{\text {st }}$ is from Global Assumptions!D38 |  |
| BT12:CM41 | Newly Impaired Lives by Cohort (NewImpLives $_{\text {z,y }}$ ) | $\begin{array}{lll} =0, & x \leq 1 \\ \mathrm{l}_{\mathrm{z}-1, \mathrm{y}(\mathrm{st})} * \mu_{\mathrm{x}-1} *\left(1-\mathrm{q}_{\mathrm{z}, \mathrm{y}(\mathrm{~m})}\right), & \mathrm{x}>1 \end{array}$ |  |
| BT42:CM42 | Total Number of Newly Impaired Lives for Issue Year y | $=\sum_{\mathrm{z}=1}^{30} \text { NewImpLives }_{\mathrm{z}, \mathrm{y}}$ |  |

## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AB51:AU80 | Enrollment of Standard Lives by Cohort $\left(l_{z, y(s t)}\right)$ | $=\begin{array}{ll} 0, & x<1 \\ =\quad \text { NewSales }_{\mathrm{z}, \mathrm{y}}, & \mathrm{x}=1 \\ \text { NewSales }_{\mathrm{z}, \mathrm{y}}+\mathrm{l}_{\mathrm{z}-1, \mathrm{y}(\mathrm{st})} *\left(1-\mu_{\mathrm{x}-1}\right) *\left(1-\mathrm{q}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}\right), & \mathrm{x}>1 \end{array}$ |  |
| AB81:AU81 | Total Enrollment of Standard Lives by Issue Year | $=\sum_{z=1}^{30} l_{z, y(s t)}$ |  |
| AX51:BQ80 | Actual Lapse Rates for Impaired Lives by Cohort ( $\mathrm{q}_{\mathrm{z}, \mathrm{y}(\mathrm{im})}$ ) | $\begin{aligned} & 0, \quad \mathrm{x} \leq 1 \text { or } \text { BaseSales }_{\mathrm{y}}=0 \\ & =\quad \begin{array}{l} \max \left\{\mathrm{q}_{\min (\mathrm{im})}, \min \left[\mathrm{q}_{\max (\mathrm{im})}, \text { Baseq }_{\mathrm{x}-1 \mathrm{im})}+\left(\left(\text { AgeAdjPremRate }_{\mathrm{i}, \mathrm{y}}\right.\right.\right.\right. \\ \left.\left.\left.\left./ \text { AgeAdjPremRate }_{\mathrm{z}-1, \mathrm{y}}\right)-1-\text { ActTrend }_{\mathrm{z}}\right) * \text { LapseAdjTrend }_{\mathrm{im}}\right]\right\}, \\ \text { otherwise } \end{array} \\ & \mathrm{q}_{\min (\mathrm{im})} \text { is from Global Assumptions!D58 } \\ & \mathrm{q}_{\max (\mathrm{im})} \text { is from Global Assumptions!D57 } \\ & \text { LapseAdjTrend }_{\mathrm{im}} \text { is from Global Assumptions!D56 } \end{aligned}$ |  |
| BT51:CM80 | Actual Combined Lapse Rates by Cohort ( $\mathrm{q}_{\mathrm{z}, \mathrm{y}}$ ) | $\begin{array}{lll} =\quad 0, & l_{z, y(\mathrm{st})}+l_{z, y(\mathrm{im})}=0 \\ & {\left[\left(\mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \mathrm{q}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}\right)+\left(\mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{im})} * \mathrm{q}_{\mathrm{z}, \mathrm{y}(\mathrm{im})}\right)\right] /\left(\mathrm{l}_{z, \mathrm{y}(\mathrm{st})}+\mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{im})}\right),} & \text { otherwise } \end{array}$ |  |
| AB89:AU118 | Enrollment of Impaired Lives by Cohort $\left(\mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{m})}\right)$ | $\begin{array}{lll} =0, & x \leq 1 \\ & \text { NewImpLives }_{z, y}+\left[l_{z-1, y(i m)} *\left(1-q_{z, y(i m)}\right)\right], & x>1 \end{array}$ |  |

## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AB119:AU119 | Total Enrollment of Impaired Lives by Issue Year | $=\sum_{z=1}^{30} l_{z, y(i m)}$ |  |
| AX89:BQ118 | Premium Rates Before Age Adjustment by Cohort (DurAdjPremRate ${ }_{z, \mathrm{y}}$ ) | $=\begin{array}{ll} 0, & \mathrm{x}<1 \\ \text { ComNewBusnRate }_{\mathrm{z}}, & \mathrm{x}=1 \\ \text { DurAdjPremRate }_{\mathrm{z}-1, \mathrm{y}} *\left(1+\text { ImpRateIncRen }_{\mathrm{z}}\right) *\left(1+\mathrm{DRI}_{\mathrm{x}}\right), & \mathrm{x}>1 \end{array}$ |  |
| BT89:CM118 | Premium Rates After Age Adjustment by Cohort (AgeAdjPremRate ${ }_{\text {e, }}$ ) | $=$ DurAdjPremRate $_{\text {z,y }}$ * PAF $_{\text {x }}$ |  |
| AB126:AU155 | Age-Adjusted Market-Level New Business Premium Rates by Cohort (AgeAdjMktNew BusnRate $_{z, y}$ ) | $\begin{array}{lrr} = & 0, & \mathrm{x}<1 \\ & \text { MarketRate }_{\mathrm{z}} * \text { PAF }_{\mathrm{x}}, & \text { otherwise } \end{array}$ |  |

## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AX126:BQ155 | Standard Lives Claim Levels by Cohort $\left(C_{z, y(s t)}\right)$ | $\begin{array}{cc} 0, & \mathrm{x}<1 \\ = & \operatorname{RefClaims}_{\mathrm{z}(\mathrm{st})} * \mathrm{DF}_{\mathrm{x}} *\left\{1+\left[\left(\operatorname{ComNewBusnRate}_{\mathrm{y}} / \operatorname{RefPrem}_{\mathrm{y}}\right)\right.\right. \\ \left.-1] * \operatorname{MorbAj}_{\mathrm{st}}\right\}, & \mathrm{x}=1 \\ & \mathrm{C}_{\mathrm{z}-1, \mathrm{y}(\mathrm{st})} * \mathrm{DF}_{\mathrm{x}} / \mathrm{DF}_{\mathrm{x}-1} *\left(1+\operatorname{ActTrend}_{z-1}\right) *(1+\text { AgingTrend }),^{\text {otherwise }} \end{array}$ <br> MorbAdj ${ }_{s t}$ is from Global Assumptions!D51 <br> AgingTrend is from Global Assumptions!C22 |  |
| BT126:CM155 | Impaired Lives Claim Levels by Cohort $\left(C_{z, y(i m)}\right)$ | $=\begin{array}{ll} 0, & x<1 \\ \text { RefClaims }_{z(\text { im })}, & x=1 \\ C_{z-1, y(i m)} *\left(1+\text { ActTrend }_{z-1}\right) *(1+\text { AgingTrend }), & x>1 \end{array}$ <br> AgingTrend is from Global Assumptions!C22 |  |
| AB164:AU193 | Standard Lives Expense Levels by Cohort $\left(\operatorname{Exp}_{z, y(s t)}\right)$ | Inflation is from Global Assumptions!B64 |  |

## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AX164:BQ193 | Impaired Lives Expense Levels by Cohort $\left(\operatorname{Exp}_{z, y(i m)}\right)$ | Inflation is from Global Assumptions!B64 |  |
| BT164:CM193 | Average Expense Levels by Cohort $\left(\operatorname{Exp}_{z, y}\right)$ | $=\begin{aligned} & 0, \quad l_{z, y(s t)}+l_{z, y(\mathrm{im})}=0 \\ & {\left[\left(\mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \operatorname{Exp}_{z, \mathrm{y}(\mathrm{st})}\right)+\left(\mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{im})} * \operatorname{Exp}_{z, \mathrm{y}(\mathrm{im})}\right)\right] /\left(\mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}+\mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{im})}\right),} \end{aligned}$ <br> otherwise |  |
| CP164:CP193 | Standard Lives Enrollment by Projection Year $\left(l_{z(s t)}\right)$ | $=\sum_{y=1}^{20} l_{z, y(s t)}$ |  |
| CP194 | Total Standard Lives Exposure | $=\sum_{z=1}^{30} l_{z(s t)}$ | "Total" refers to the sum over all 30 projection years. |
| CQ164:CQ193 | Standard Lives Premium by Projection Year $\left(\mathrm{P}_{\mathrm{z}(\mathrm{st})}\right)$ | $=\sum_{\mathrm{y}=1}^{20} l_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \text { AgeAdjPremRate }_{\mathrm{z}, \mathrm{y}} * 12$ |  |

## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| CQ194 | Total Standard Lives Premium $\left(\mathrm{P}_{\mathrm{st}}\right)$ | $=\sum_{\mathrm{z}=1}^{30} \mathrm{P}_{\mathrm{z}(\mathrm{st})}$ |  |  |
| CR164:CR193 | Standard Lives Claims by Projection Year ( $\mathrm{C}_{\mathrm{z}(\mathrm{st})}$ ) | $=\sum_{\mathrm{y}=1}^{20} \mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \mathrm{C}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * 12$ |  |  |
| CR194 | Total Standard Lives Claims ( $\mathrm{C}_{\mathrm{st}}$ ) | $=\sum_{z=1}^{30} \mathrm{C}_{\mathrm{z}(\mathrm{st})}$ |  |  |
| CS164:CS193 | Standard Lives Loss Ratio by Projection Year | $\begin{array}{ll} =\quad 0, \\ & \mathrm{C}_{\mathrm{z}(\mathrm{st})} / \mathrm{P}_{\mathrm{z}(\mathrm{st})}, \end{array}$ | $\begin{aligned} & \mathrm{P}_{\mathrm{Z}(\mathrm{st})}=0 \\ & \mathrm{P}_{\mathrm{z}(\mathrm{st})} \neq 0 \end{aligned}$ |  |
| CS194 | Standard Lives Loss Ratio | $=\mathrm{C}_{\text {st }} / \mathrm{P}_{\text {st }}$ |  |  |
| CV164:CV193 | Impaired Lives Enrollment by Projection Year $\left(l_{z(i m)}\right)$ | $=\sum_{\mathrm{y}=1}^{20} l_{\mathrm{z}, \mathrm{y}(\mathrm{im})}$ |  |  |
| CV194 | Total Impaired Lives Exposure | $=\sum_{z=1}^{30} l_{z(\mathrm{im})}$ |  |  |

## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| CW164:CW193 | Impaired Lives Premium by Projection Year $\left(\mathrm{P}_{\mathrm{z}(\mathrm{im})}\right)$ | $=\sum_{\mathrm{y}=1}^{20} l_{\mathrm{z}, \mathrm{y}(\mathrm{im})} * \text { AgeAdjPremRate } \mathrm{A}_{\mathrm{z}, \mathrm{y}} * 12$ |  |  |
| CW194 | Total Impaired Lives Premium $\left(\mathrm{P}_{\mathrm{im}}\right)$ | $=\sum_{z=1}^{30} \mathrm{P}_{z(\mathrm{im})}$ |  |  |
| CX164:CX193 | Impaired Lives Claims by Projection Year ( $\mathrm{C}_{\mathrm{z} \text { (im) }}$ ) | $=\sum_{\mathrm{y}=1}^{20} \mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{~m})} * \mathrm{C}_{\mathrm{z}, \mathrm{y}(\mathrm{im})} * 12$ |  |  |
| CX194 | Total Impaired Lives Claims ( $\mathrm{C}_{\mathrm{im}}$ ) | $=\sum_{\mathrm{z}=1}^{30} \mathrm{C}_{\mathrm{z}(\mathrm{im})}$ |  |  |
| CY165:CY193 | Impaired Lives Loss Ratio by Projection Year | $\begin{array}{ll} = & 0, \\ & \mathrm{C}_{\mathrm{z}(\mathrm{im})} / \mathrm{P}_{\mathrm{Z}(\mathrm{im})}, \end{array}$ | $\begin{aligned} & \mathrm{P}_{\mathrm{z}(\mathrm{im})}=0 \\ & \mathrm{P}_{\mathrm{z}(\mathrm{im})} \neq 0 \end{aligned}$ |  |
| CY194 | Impaired Lives Loss Ratio | $=\mathrm{C}_{\mathrm{im}} / \mathrm{P}_{\mathrm{im}}$ |  |  |
| DG159 | Trend Scenario | From Global Assumptions!G102 |  |  |
| DK159 | Pooling Duration | From IBS Assump CY pooling!E3 |  | Should be from IBS Assump DUR pooling but is not used anyway. |

## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| DA164:DA193 | Combined Enrollment by Projection Year <br> ( $\mathrm{l}_{\mathrm{z}}$ ) | $=l_{\text {z(st) }}+l_{z(\text { (im) }}$ |  | "Combined" refers to the combination of standard and impaired. |
| DA194 | Total Combined Exposure (l) | $=\sum_{\mathrm{z}=1}^{30} \mathrm{l}_{\mathrm{z}}$ |  |  |
| DB164:DB193 | Combined Premium by Projection Year $\left(\mathrm{P}_{\mathrm{z}}\right)$ | $=\mathrm{P}_{\mathrm{z}(\mathrm{st})}+\mathrm{P}_{\mathrm{z}(\mathrm{im})}$ |  |  |
| DB194 | Total Combined Premium (P) | $=\sum_{z=1}^{30} \mathrm{P}_{\mathrm{z}}$ |  |  |
| DC164:DC193 | Total Combined Premium PMPM | $\begin{aligned} = & 0, \\ & P_{z} / l_{z} / 12, \end{aligned}$ | $\begin{aligned} & \mathrm{l}_{\mathrm{z}}=0 \\ & \mathrm{l}_{\mathrm{z}} \neq 0 \end{aligned}$ |  |
| DD164:DD193 | Combined Claims by Projection Year $\left(\mathrm{C}_{\mathrm{z}}\right)$ | $=\mathrm{C}_{\mathrm{z}(\mathrm{st})}+\mathrm{C}_{\mathrm{z} \text { (im) }}$ |  |  |
| DD194 | Total Combined Claims (C) | $=\sum_{z=1}^{30} C_{z}$ |  |  |

## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D



## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DJ164:DJ193 | Combined Premium Less Claims by Projection Year (PminusC ${ }_{z}$ ) | $=\mathrm{P}_{\mathrm{z}}-\mathrm{C}_{\mathrm{z}}$ |  |
| DJ194 | Total Combined Premium Less Claims | $=\mathrm{P}-\mathrm{C}$ |  |
| DK164:DK193 | Combined Expenses by Projection Year $\left(\operatorname{Exp}_{z}\right)$ | $=12 *\left[\sum_{y=1}^{20}\left(l_{z, y(s t)} * \operatorname{Exp}_{z, y(s t)}\right)+\sum_{y=1}^{20}\left(l_{z, y(\mathrm{im})} * \operatorname{Exp}_{z, y(\mathrm{im})}\right)\right]$ |  |
| DK194 | Total Combined Expenses (Exp) | $=\sum_{z=1}^{30} \operatorname{Exp}_{z}$ |  |
| DL164:DL193 | Combined Expense Ratio by Projection Year | $\begin{aligned} & =\quad 0, \\ & \operatorname{Exp}_{z} / P_{z}, \end{aligned}$ |  |
| DL194 | Total Combined Expense Ratio | $\begin{array}{ll} =\quad 0, \\ & \operatorname{Exp} / \mathrm{P}, \end{array}$ |  |
| DM164:DM193 | Combined Gain by Projection Year ( Gain $_{z}$ ) | $=\mathrm{P}_{\mathrm{z}}-\mathrm{C}_{\mathrm{z}}-\operatorname{Exp}_{\mathrm{z}}$ |  |
| DM194 | Total Combined Gain (Gain) | $=\sum_{\mathrm{z}=1}^{30} \text { Gain }_{\mathrm{z}}$ |  |

## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| DN164:DN193 | Combined Gain as a <br> Percentage of Combined <br> Premium by Projection Year | $\begin{aligned} &= 0, \\ & \text { Gain }_{z} / P_{z}, \end{aligned}$ | $\begin{aligned} & \mathrm{P}_{\mathrm{z}}=0 \\ & \mathrm{P}_{\mathrm{z}} \neq 0 \end{aligned}$ |  |
| DN194 | Total Combined Gain as a Percentage of Combined Premium | $\begin{aligned} &=\quad 0, \\ & \text { Gain / P, } \end{aligned}$ | $\begin{aligned} & \mathrm{P}=0 \\ & \mathrm{P} \neq 0 \end{aligned}$ |  |
| DO164:DO193 | Risk-Based Capital by Projection Year $\left(\mathrm{RBC}_{\mathrm{z}}\right)$ | $=\mathrm{P}_{\mathrm{z}} * \mathrm{RBC} \%$ <br> RBC\% is from Global Assumptions!D83 |  | Uses a predefined percentage of premium as a proxy for riskbased capital requirement. |
| DP164:DP193 | Opportunity Cost of Capital by Projection Year $\left(\mathrm{OCC}_{\mathrm{z}}\right)$ | $=-\mathrm{RBC}_{\mathrm{z}} * \mathrm{OCC} \%$ <br> OCC\% is from Global Assumptions!D84 |  |  |
| DP194 | Total Opportunity Cost of Capital | $=\sum_{\mathrm{z}=1}^{30} \mathrm{OCC}_{\mathrm{z}}$ |  |  |
| DQ164:DQ193 | Economic Gain by Projection Year (EconGain ${ }_{z}$ ) | $=\mathrm{Gain}_{\mathrm{z}}+\mathrm{OCC}_{\mathrm{z}}$ |  |  |

## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DQ194 | Total Economic Gain | $=\sum_{z=1}^{30} \text { EconGain }_{z}$ |  |
| DR164:DR193 | Market New Business Rate | $=$ MarketRate $_{\text {z }}$ | These are just copies of values calculated elsewhere in this tab. They are copied here for convenience only. |
| DS164:DS193 | Company New Business Rate | $=$ ComNewBusnRate $_{\text {z }}$ |  |
| DT164:DT193 | Implemented Rate Increase for New Business | $=$ ImpRateIncNew $_{\text {z }}$ |  |
| DU164:DU193 | Implemented Rate Increase for Renewal Business | $=$ ImpRateIncRen $_{\text {z }}$ |  |
| DV164:DV183 | New Business Sales | $=$ NewSales $_{\text {z, }}$ | Formula applies only for $\mathrm{z}=1,2,3, \ldots, 20$. |
| DB197 | Present Value of Combined Premium <br> (PVPremium) | $=N P V_{\text {int }}\left(\mathrm{P}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ | All present values in this section are taken over all 30 projection years, and int is from Global Assumptions!B63. |

## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| DD197 | Present Value of Combined <br> Claims <br> (PVClaims) | $=\mathrm{NPV}_{\mathrm{int}}\left(\mathrm{C}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DJ197 | Present Value of Combined <br> Premium Less Combined <br> Claims <br> (PVPminusC) | $=\mathrm{NPV}_{\mathrm{int}}\left(\right.$ PminusC $\left._{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DK197 | Present Value of Combined <br> Expenses <br> (PVExp) | $=\mathrm{NPV}_{\text {int }}\left(\operatorname{Exp}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DM197 | Present Value of Combined <br> Gain <br> (PVGain) | $=\mathrm{NPV}_{\mathrm{int}}\left(\mathrm{Gain}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DP197 | Present Value of <br> Opportunity Cost of Capital <br> (PVOCC) | $=\mathrm{NPV}_{\mathrm{int}}\left(\mathrm{OCC}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DQ197 | Present Value of Economic <br> Gain <br> (PVEconGain) | $=\mathrm{NPV}_{\text {int }}\left(\right.$ EconGain $\left._{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |

## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| DB198 | Present Value of Combined <br> Premium as a Percentage of <br> Present Value of Combined <br> Premium | $=$ PVPremium / PVPremium | Identically equal to <br> $100.0 \%$. |
| DD198 | Present Value of Combined <br> Claims as a Percentage of <br> Present Value of Combined <br> Premium | $=$ PVClaims / PVPremium |  |
| DJ198 | Present Value of Combined <br> Premium Less Combined <br> Claims as a Percentage of <br> Present Value of Combined <br> Premium | $=$ PVPminusC / PVPremium |  |
| DK198 | Present Value of Combined <br> Expenses as a Percentage of <br> Present Value of Combined <br> Premium | $=$ PVExp / PVPremium |  |
| DM198 | Present Value of Combined <br> Gain as a Percentage of <br> Present Value of Combined <br> Premium | $=$ PVGain / PVPremium |  |

## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DP198 | Present Value of Opportunity Cost of Capital as a Percentage of Present Value of Combined Premium | = PVOCC / PVPremium |  |
| DQ198 | Present Value of Economic Gain as a Percentage of Present Value of Combined Premium | = PVEconGain / PVPremium |  |
| BT206:CM235 | Duration Identification (DurID ${ }_{z, y}$ ) | $=\max (\mathrm{x}, 0)$ |  |
| BT246:CM275 | Duration Use Indicator (DurFlag ${ }_{z, \mathrm{y}}$ ) | $\begin{array}{rrr} 0, & \mathrm{x}<1 \text { or }\left(\mathrm{x} \geq 1 \text { and } \operatorname{DurID}_{\mathrm{z}, \mathrm{y}}>\text { PoolingDur }\right) \\ 1, & \text { otherwise } \end{array}$ |  |
| CP246:CP275 | Standard Lives Enrollment by Projection Year Prior to Pooling $\left(l_{z(\text { st, pre })}\right)$ | $=\sum_{\mathrm{y}=1}^{20} l_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \text { DurFlag }_{\mathrm{z}, \mathrm{y}}$ | Subscript "pre" denotes that the variable reflects only durations earlier than PoolingDur. |
| CP276 | Total Standard Lives Exposure Year Prior to Pooling $\left(l_{\text {st,pre }}\right)$ | $=\sum_{\mathrm{z}=1}^{30} l_{\mathrm{z}(\mathrm{st}, \mathrm{pre})}$ | "Total" refers to the sum over all 30 projection years. |

## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| CQ246:CQ275 | Standard Lives Premium by Projection Year Prior to Pooling $\left(\mathrm{P}_{\mathrm{z}(\mathrm{st}, \mathrm{pre})}\right)$ | $=\sum_{\mathrm{y}=1}^{20} \mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \text { AgeAdjPremRate }_{\mathrm{z}, \mathrm{y}} * \text { DurFlag }_{\mathrm{z}, \mathrm{y}} * 12$ |  |  |
| CQ276 | Total Standard Lives Premium Year Prior to Pooling $\left(\mathrm{P}_{\mathrm{st}, \mathrm{pre}}\right)$ | $=\sum_{z=1}^{30} \mathrm{P}_{\mathrm{z}(\mathrm{st}, \mathrm{pre})}$ |  |  |
| CR246:CR275 | Standard Lives Claims by Projection Year Prior to Pooling $\left(\mathrm{C}_{\mathrm{z}(\mathrm{st}, \mathrm{pre})}\right)$ | $=\sum_{\mathrm{y}=1}^{20} \mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \mathrm{C}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \text { DurFlag }_{\mathrm{z}, \mathrm{y}} * 12$ |  |  |
| CR276 | Total Standard Lives Claims (C $\mathrm{C}_{\mathrm{st} \text {,pre }}$ ) | $=\sum_{z=1}^{30} C_{z(s t, \text { pre })}$ |  |  |
| CS246:CS275 | Standard Lives Loss Ratio by Projection Year Prior to Pooling | $\begin{aligned} & =\quad 0, \\ & C_{Z(\mathrm{st}, \mathrm{pre})} / \mathrm{P}_{\mathrm{Z}(\mathrm{st}, \mathrm{pre})}, \end{aligned}$ | $\begin{aligned} & \mathrm{P}_{\mathrm{Z}(\mathrm{st}, \mathrm{pre})}=0 \\ & \mathrm{P}_{\mathrm{Z}(\mathrm{st}, \mathrm{pre})} \neq 0 \end{aligned}$ |  |
| CS276 | Standard Lives Loss Ratio Prior to Pooling | $\begin{aligned} = & 0, \\ & \mathrm{C}_{\mathrm{st}, \mathrm{pre}} / \mathrm{P}_{\mathrm{st}, \mathrm{pre}} \end{aligned}$ | $\begin{aligned} & \mathrm{P}_{\text {st,pre }}=0 \\ & \mathrm{P}_{\text {st,pre }} \neq 0 \end{aligned}$ |  |

## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| CV246:CV275 | Impaired Lives Enrollment by Projection Year Prior to Pooling $\left(\mathrm{l}_{\mathrm{z}(\mathrm{im}, \mathrm{pre})}\right)$ | $=\sum_{\mathrm{y}=1}^{20} \mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{im})} * \text { DurFlag }_{\mathrm{z}, \mathrm{y}}$ |  |
| CV276 | Total Impaired Lives Exposure Year Prior to Pooling | $=\sum_{\mathrm{z}=1}^{30} \mathrm{l}_{\mathrm{z}(\mathrm{im}, \mathrm{pre})}$ |  |
| CW246:CW275 | Impaired Lives Premium by Projection Year Prior to Pooling $\left(\mathrm{P}_{\mathrm{z}(\mathrm{im}, \mathrm{pre})}\right)$ | $=\sum_{\mathrm{y}=1}^{20} \mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{im})} * \text { AgeAdjPremRate }_{\mathrm{z}, \mathrm{y}} * \text { DurFlag }_{\mathrm{z}, \mathrm{y}} * 12$ |  |
| CW276 | Total Impaired Lives Premium Year Prior to Pooling $\left(\mathrm{P}_{\mathrm{im}, \mathrm{pre}}\right)$ | $=\sum_{z=1}^{30} \mathrm{P}_{\mathrm{z}(\mathrm{im}, \mathrm{pre})}$ |  |
| CX246:CX275 | Impaired Lives Claims by Projection Year Prior to Pooling $\left(\mathrm{C}_{z(\mathrm{im}, \mathrm{pre})}\right)$ | $=\sum_{\mathrm{y}=1}^{20} \mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{~m})} * \mathrm{C}_{\mathrm{z}, \mathrm{y}(\mathrm{~m})} * \text { DurFlag }_{\mathrm{z}, \mathrm{y}} * 12$ |  |
| CX276 | Total Impaired Lives Claims Year Prior to Pooling ( $\mathrm{C}_{\text {im,pre }}$ ) | $=\sum_{\mathrm{z}=1}^{30} \mathrm{C}_{\mathrm{z}(\mathrm{im}, \mathrm{pre})}$ |  |

## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| CY246:CY275 | Impaired Lives Loss Ratio by Projection Year Prior to Pooling | $\begin{aligned} = & 0, \\ & C_{z(\text { im,pre })} / P_{z(\text { (im,pre) }}, \end{aligned}$ | $\begin{aligned} & \mathrm{P}_{\mathrm{z} \text { (im,pre) }}=0 \\ & \mathrm{P}_{\mathrm{z}(\mathrm{im}, \mathrm{pre})} \neq 0 \end{aligned}$ |  |
| CY276 | Impaired Lives Loss Ratio Prior to Pooling | $\begin{aligned} = & 0, \\ & \mathrm{C}_{\mathrm{im}, \mathrm{pre}} / \mathrm{P}_{\mathrm{im}, \mathrm{pre}} \end{aligned}$ | $\begin{aligned} & \mathrm{P}_{\mathrm{im}, \mathrm{pre}}=0 \\ & \mathrm{P}_{\mathrm{im}, \text { pre }} \neq 0 \end{aligned}$ |  |
| DH241 | Trend Scenario | From Global Assumptions!G102 |  |  |
| DL241 | Pooling Year (PoolingDur) | From IBS Assump DUR pooling!E3 |  |  |
| DA246:DA275 | Combined Enrollment by Projection Year Prior to Pooling $\left(l_{\text {l,pre }}\right)$ | $=l_{\text {(st,pre })}+l_{\text {z(im,pre) }}$ |  | "Combined" refers to the combination of standard and impaired. |
| DA275 | Total Combined Exposure Prior to Pooling (l $\mathrm{l}_{\text {pre }}$ ) | $=\sum_{\mathrm{z}=1}^{30} l_{\mathrm{z}, \mathrm{pre}}$ |  |  |
| DB246:DB275 | Combined Premium by Projection Year Prior to Pooling $\left(\mathrm{P}_{\mathrm{z}, \mathrm{pre}}\right)$ | $=\mathrm{P}_{\mathrm{z}(\mathrm{st}, \mathrm{pre})}+\mathrm{P}_{\mathrm{z} \text { (im,pre) }}$ |  |  |

## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| DB276 | Total Combined Premium Prior to Pooling ( $\mathrm{P}_{\text {pre }}$ ) | $=\sum_{z=1}^{30} \mathrm{P}_{\mathrm{z}, \mathrm{pre}}$ |  |  |
| DC246:DC275 | Combined Premium PMPM by Projection Year Prior to Pooling | $\begin{aligned} = & 0, \\ & \mathrm{P}_{\mathrm{z}, \mathrm{pre}} / \mathrm{l}_{\mathrm{z}, \mathrm{pre}} / 12, \end{aligned}$ | $\begin{gathered} \mathrm{P}_{\mathrm{z}, \mathrm{pre}}=0 \\ \mathrm{P}_{\mathrm{z}, \mathrm{pre}} \neq 0 \end{gathered}$ |  |
| DC276 | Total Combined Premium PMPM Prior to Pooling | $\begin{array}{ll} =\quad 0, \\ P_{\text {pre }} / l_{\text {pre }} / 12, \end{array}$ | $\begin{aligned} & \mathrm{P}_{\mathrm{pre}}=0 \\ & \mathrm{P}_{\mathrm{pre}} \neq 0 \end{aligned}$ |  |
| DD246:DD275 | Combined Claims by Projection Year Prior to Pooling $\left(\mathrm{C}_{\mathrm{z}, \mathrm{pre}}\right)$ | $=\mathrm{C}_{\text {z(st,pre) }}+\mathrm{C}_{\text {z(im,pre) }}$ |  |  |
| DD276 | Total Combined Claims Prior to Pooling ( $\mathrm{C}_{\text {pre }}$ ) | $=\sum_{\mathrm{z}=1}^{30} \mathrm{C}_{\mathrm{z}, \mathrm{pre}}$ |  |  |
| DE246:DE275 | Combined Claims PMPM by Projection Year Prior to Pooling | $\begin{aligned} & =0, \\ & \quad C_{z, \text { pre }} / l_{\mathrm{l}, \text { pre }} / 12, \end{aligned}$ | $\begin{aligned} & \mathrm{l}_{\mathrm{z}, \mathrm{pre}}=0 \\ & \mathrm{l}_{\mathrm{z}, \mathrm{pre}} \neq 0 \end{aligned}$ |  |
| DE276 | Total Combined Claims PMPM Prior to Pooling | $\begin{array}{ll} =\quad 0, \\ & C_{\text {pre }} / l_{\text {pre }} / 12, \end{array}$ | $\begin{aligned} & \mathrm{l}_{\mathrm{pre}}=0 \\ & \mathrm{l}_{\text {pre }} \neq 0 \end{aligned}$ |  |

## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DF246:DF275 | Combined Loss Ratio by Projection Year Prior to Pooling (ActualLR $_{z, \text { pre }}$ ) | $\begin{array}{ll} =0, & P_{z, \text { pre }}=0 \\ C_{z, \text { pre }} / P_{z, p r e}, & P_{z, \text { pre }} \neq 0 \end{array}$ |  |
| DF276 | Total Combined Loss Ratio Prior to Pooling | $\begin{array}{ll} =0, & \mathrm{P}_{\text {pre }}=0 \\ \mathrm{C}_{\text {pre }} / \mathrm{P}_{\text {pre }}, & \mathrm{P}_{\text {pre }} \neq 0 \end{array}$ |  |
| DG246:DG275 | Combined Expected Loss <br> Ratio by Projection Year Prior to Pooling (ExpectedLR $\mathrm{Z}_{\text {zpre }}$ ) | From the appropriate cell of CM-b_TLR!W19:W48, based on projection year, where $b$ is the block number |  |
| DH246:DH275 | Actual-to-Expected Combined Loss Ratio by Projection Year Prior to Pooling | $\begin{array}{lll} =0, & \mathrm{P}_{z, \mathrm{pre}}=0 \\ & \mathrm{P}_{\mathrm{z}, \mathrm{pre}} \neq 0 \end{array}$ |  |
| DI246:DI275 | Rolling Two-Year Combined Loss Ratio by Projection Year Prior to Pooling | $=\begin{array}{lr} 0, & \left(\mathrm{z}=1 \text { and } \mathrm{P}_{1, \text { pre }}=0\right) \text { or }\left(\mathrm{z}>1 \text { and } \mathrm{P}_{\mathrm{z}-1, \text { pre }}+\mathrm{P}_{\mathrm{z}, \mathrm{pre}}\right)=0 \\ \mathrm{C}_{\mathrm{z}, \mathrm{pre}} / \mathrm{P}_{\mathrm{z}, \mathrm{pre}}, & \mathrm{z}=1 \text { and } \mathrm{P}_{1, \text { pre }} \neq 0 \\ \left(\mathrm{C}_{\mathrm{z}-1, \mathrm{pre}}+\mathrm{C}_{\mathrm{z}, \mathrm{pre}}\right) /\left(\mathrm{P}_{\mathrm{z}-1, \text { pre }}+\mathrm{P}_{\mathrm{z}, \mathrm{pre}}\right), & \text { otherwise } \end{array}$ |  |
| DJ246:DJ275 | Combined Premium Less Claims by Projection Year Prior to Pooling (PminusC $_{z, \text { pre }}$ ) | $=\mathrm{P}_{\mathrm{z}, \mathrm{pre}}-\mathrm{C}_{\text {z,pre }}$ |  |

## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| DJ276 | Total Combined Premium Less Claims Prior to Pooling | $=\mathrm{P}_{\text {pre }}-\mathrm{C}_{\text {pre }}$ |  |  |
| DK246:DK275 | Combined Expenses by Projection Year Prior to Pooling $\left(\operatorname{Exp}_{z, p r e}\right)$ | $\begin{aligned} = & 12 *\left[\sum_{\mathrm{i}=1}^{20}\left(l_{\mathrm{z}, \mathrm{i}(\mathrm{st})} * \operatorname{Exp}_{\mathrm{z}, \mathrm{i}(\mathrm{st})} * \text { DurFlag }_{\mathrm{z}, \mathrm{i}}\right)\right. \\ & \left.+\sum_{\mathrm{j}=1}^{20}\left(\mathrm{l}_{\mathrm{z}, \mathrm{j}(\mathrm{im})} * \operatorname{Exp}_{\mathrm{z}, \mathrm{j}(\mathrm{im})} * \text { DurFlag }_{\mathrm{z}, \mathrm{j}}\right)\right] \end{aligned}$ |  |  |
| DK276 | Total Combined Expenses Prior to Pooling (Exppre) | $=\sum_{\mathrm{z}=1}^{30} \operatorname{Exp}_{\mathrm{z}, \mathrm{pre}}$ |  |  |
| DL246:DL275 | Combined Expense Ratio by Projection Year Prior to Pooling | $\begin{aligned} &=\quad 0, \\ & \operatorname{Exp}_{\mathrm{z}, \mathrm{pre}} / \mathrm{P}_{\mathrm{z}, \mathrm{pre}}, \end{aligned}$ | $\begin{aligned} & \mathrm{P}_{\mathrm{z}, \mathrm{pre}}=0 \\ & \mathrm{P}_{\mathrm{z}, \mathrm{pre}} \neq 0 \end{aligned}$ |  |
| DL276 | Total Combined Expense Ratio Prior to Pooling | $\begin{aligned} = & 0, \\ & \text { Exp pre }^{2} / \mathrm{P}_{\text {pre }}, \end{aligned}$ | $\begin{aligned} & \mathrm{P}_{\mathrm{pre}}=0 \\ & \mathrm{P}_{\mathrm{pre}} \neq 0 \end{aligned}$ |  |
| DM246:DM275 | Combined Gain by Projection Year Prior to Pooling $\left(\text { Gain }_{z, \text { pre }}\right)$ | $=\mathrm{P}_{\text {z,pre }}-\mathrm{C}_{\text {z,pre }}-\operatorname{Exp}_{z, \mathrm{pre}}$ |  |  |

## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| DM276 | Total Combined Gain Prior to Pooling (Gain ${ }_{\text {pre }}$ ) | $=\sum_{z=1}^{30} \text { Gain }_{z, \text { pre }}$ |  |  |
| DN246:DN275 | Combined Gain as a <br> Percentage of Combined <br> Premium by Projection Year <br> Prior to Pooling | $\begin{aligned} = & 0, \\ & \text { Gain }_{\text {z,pre }} / P_{\mathrm{z}, \mathrm{pre}} \end{aligned}$ | $\begin{aligned} & \mathrm{P}_{\mathrm{z}, \mathrm{pre}}=0 \\ & \mathrm{P}_{\mathrm{z}, \mathrm{pre}} \neq 0 \end{aligned}$ |  |
| DN276 | Total Combined Gain as a Percentage of Combined Premium Prior to Pooling | $\begin{aligned} = & 0, \\ & \text { Gain }_{\text {pre }} / P_{\text {pre }}, \end{aligned}$ | $\begin{gathered} \mathrm{P}_{\mathrm{pre}}=0 \\ \mathrm{P}_{\mathrm{pre}} \neq 0 \end{gathered}$ |  |
| DO246:DO275 | Risk-Based Capital by Projection Year Prior to Pooling $\left(\mathrm{RBC}_{\mathrm{z}, \mathrm{pre}}\right)$ | $=\mathrm{P}_{\mathrm{z}, \mathrm{pre}} * \mathrm{RBC} \%$ <br> RBC\% is from Global Assumptions!D83 |  | Uses a predefined percentage of premium as a proxy for riskbased capital requirement. |
| DP246:DP275 | Opportunity Cost of Capital by Projection Year Prior to Pooling $\left(\mathrm{OCC}_{z, \mathrm{pre}}\right)$ | $=-\mathrm{RBC}_{\mathrm{z}, \mathrm{pre}} * \mathrm{OCC} \%$ <br> OCC\% is from Global Assumptions!D84 |  |  |
| DP276 | Total Opportunity Cost of Capital Prior to Pooling | $=\sum_{\mathrm{z}=1}^{30} \mathrm{OCC}_{\mathrm{z}, \mathrm{pre}}$ |  |  |

## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DQ246:DQ275 | Economic Gain by Projection Year Prior to Pooling (EconGain ${ }_{z, \text { pre }}$ ) | $=$ Gain $_{\text {z,pre }}+\mathrm{OCC}_{\text {z,pre }}$ |  |
| DQ276 | Total Economic Gain Prior to Pooling | $=\sum_{\mathrm{z}=1}^{30} \text { EconGain }_{\mathrm{z}, \mathrm{pre}}$ |  |
| DR246:DR275 | Market New Business Rate | $=$ MarketRate $_{\text {z }}$ | These are just copies of values calculated elsewhere in this tab. They are copied here for convenience only. |
| DS246:DS275 | Company New Business Rate | = ComNewBusnRate ${ }_{\text {z }}$ |  |
| DT246:DT275 | Implemented Rate Increase for New Business | $=$ ImpRateIncNew $_{\text {z }}$ |  |
| DT276 | Average Implemented Rate Increase for New Business Prior to Pooling | = average $\left(\operatorname{ImpRateIncNew}{ }_{z}\right)$, where the average is taken over $\mathrm{z}=$ Intro $\mathrm{Yr}_{\mathrm{b}}+1$, Intro $\mathrm{Yr}_{\mathrm{b}}+2$, Intro $\mathrm{Yr}_{\mathrm{b}}+3, \ldots$, Intro $\mathrm{Yr}_{\mathrm{b}}+$ PoolingDur -2 , IntroYr ${ }_{\mathrm{b}}+$ PoolingDur -1 , Intro $_{\text {Y }} r_{\mathrm{b}}+$ PoolingDur <br> Intro $\mathrm{Yr}_{\mathrm{b}}$ is pulled from the appropriate cell of IBS Assump DUR pooling!D11:D15 <br> PoolingDur is from IBS Assump DUR pooling!E3 |  |

## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DS277 | Minimum Implemented Rate Increase for New Business Prior to Pooling (MinRI ${ }_{b}$ ) | $\left.=\min (\operatorname{ImpRateIncNew})_{z}\right)$, where the minimum is taken over $\mathrm{z}=$ Intro $^{(1)} r_{b}$ +1 , Intro $\mathrm{Yr}_{\mathrm{b}}+2$, Intro $\mathrm{Yr}_{\mathrm{b}}+3, \ldots$, Intro $\mathrm{Yr}_{\mathrm{b}}+$ PoolingDur -2 , Intro $\mathrm{Yr}_{\mathrm{b}}+$ PoolingDur - 1, IntroYr $r_{b}$ + PoolingDur <br> Intro $\mathrm{Yr}_{\mathrm{b}}$ is from the appropriate cell of IBS Assump DUR pooling!D11:D15 <br> PoolingDur is from IBS Assump DUR pooling!E3 |  |
| DS278 | Maximum Implemented Rate Increase for New Business Prior to Pooling (MaxRI $\mathrm{I}_{\mathrm{b}}$ ) | $=\max \left(\operatorname{ImpRateIncNew}{ }_{z}\right)$, where the maximum is taken over $\mathrm{z}=$ Intro $_{\text {Yr }}{ }_{\mathrm{b}}$ +1 , Intro $\mathrm{Yr}_{\mathrm{b}}+2$, Intro $\mathrm{Yr}_{\mathrm{b}}+3, \ldots$, Intro $\mathrm{Yr}_{\mathrm{b}}+$ PoolingDur -2 , Intro $\mathrm{Yr}_{\mathrm{b}}+$ PoolingDur - 1, IntroYr $r_{b}+$ PoolingDur <br> Intro $\mathrm{Yr}_{\mathrm{b}}$ is from the appropriate cell of IBS Assump DUR pooling!D11:D15 <br> PoolingDur is from IBS Assump DUR pooling!E3 |  |
| DU246:DU275 | Implemented Rate Increase for Renewal Business | $=$ ImpRateIncRen $_{\text {z }}$ |  |
| DV246:DV265 | New Business Sales | $=$ NewSales $_{\text {z,z }}$ | Formula only applies for $\mathrm{z}=1,2,3, \ldots, 20$. |
| DB279 | Present Value of Combined Premium Prior to Pooling (PVPremium $_{\text {pre }}$ ) | $=\operatorname{NPV}_{\text {int }}\left(\mathrm{P}_{\text {z,pre }}\right) * \sqrt{1+\mathrm{int}}$ | All present values in this section are taken over all 30 projection years, and int is from Global Assumptions!B63. |

## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DD279 | Present Value of Combined Claims Prior to Pooling (PVClaims ${ }_{\text {pre }}$ ) | $=N P V_{\text {int }}\left(\mathrm{C}_{\text {z,pre }}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DJ279 | Present Value of Combined Premium Less Combined Claims Prior to Pooling (PVPminusC pre ) | $=\mathrm{NPV}_{\text {int }}\left(\right.$ PminusC $\left._{\text {z,pre }}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DK279 | Present Value of Combined Expenses Prior to Pooling (PVExp ${ }_{\text {pre }}$ ) | $=N P V_{\text {int }}\left(\operatorname{Exp}_{\text {z,pre }}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DM279 | Present Value of Combined Gain Prior to Pooling (PVGain ${ }_{\text {pre }}$ ) | $=N P V_{\text {int }}\left(\right.$ Gain $\left._{\text {z,pre }}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DP279 | Present Value of <br> Opportunity Cost of Capital <br> Prior to Pooling <br> ( PVOCC $_{\text {pre }}$ ) | $=\mathrm{NPV}_{\text {int }}\left(\mathrm{OCC}_{\text {z,pre }}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DQ279 | Present Value of Economic Gain <br> (PVEconGain ${ }_{\text {pre }}$ ) | $=N P V_{\text {int }}\left(\right.$ EconGain $\left._{\text {z,pre }}\right) * \sqrt{1+\mathrm{int}}$ |  |

## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DB280 | Present Value of Combined Premium Prior to Pooling as a Percentage of Present Value of Combined Premium Prior to Pooling | $=$ PVPremium $_{\text {pre }} /$ PVPremium $_{\text {pre }}$ | The formula in the spreadsheet is in error. |
| DD280 | Present Value of Combined Claims Prior to Pooling as a Percentage of Present Value of Combined Premium Prior to Pooling | $=$ PVClaims $_{\text {pre }} /$ PVPremium ${ }_{\text {pre }}$ |  |
| DJ280 | Present Value of Combined Premium Less Combined Claims Prior to Pooling as a Percentage of Present Value of Combined Premium Prior to Pooling | = PVPminus crer $^{\text {/ }}$ PVPremium ${ }_{\text {pre }}$ |  |
| DK280 | Present Value of Combined <br> Expenses Prior to Pooling as <br> a Percentage of Present <br> Value of Combined <br> Premium Prior to Pooling | $=$ PVExp $_{\text {pre }} /$ PVPremium ${ }_{\text {pre }}$ |  |
| DM280 | Present Value of Combined Gain Prior to Pooling as a Percentage of Present Value of Combined Premium Prior to Pooling | $=$ PVGain $_{\text {pre }} /$ PVPremium $_{\text {pre }}$ |  |

## Interblock Subsidy.xls - IBS-1D, IBS-2D, IBS-3D, IBS-4D, IBS-5D

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| DP280 | Present Value of <br> Opportunity Cost of Capital <br> Prior to Pooling as a <br> Percentage of Present Value <br> of Combined Premium Prior <br> to Pooling | $=$ PVOCC $_{\text {pre }} /$ PVPremium $_{\text {pre }}$ |  |
| DQ280 | Present Value of Economic <br> Gain Prior to Pooling as a <br> Percentage of Present Value <br> of Combined Premium Prior <br> to Pooling | $=$ PVEconGain $_{\text {pre }} /$ PVPremium $_{\text {pre }}$ |  |

## Interblock Subsidy.xls - Rate Compression Assumptions

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| AM2 | Degree of Rate <br> Compression <br> (Comp) | $=3$ | Hardcoded value |
| AM3 | Year that Rate Compression <br> Begins <br> (CompYr) | $=1$ | Hardcoded value |
| AM4 | Trend Scenario | From Global Assumptions!G102 |  |
| AT3:AT7 | Durational Rate Increase <br> (DRI $)$ | From the appropriate cell of Current Market Assump 5 blocks!R6:R10 |  |
| AV4, AX4, <br> AZ4, BB4, BD4 | Standard Lives Morbidity <br> Adjustment Factors by <br> Block <br> (MorbAdjb(st) $)$ | From the appropriate cell of Current Market Assump 5 blocks!O4, Q4, <br> S4, U4, or W4 |  |
| AW4, AY4, <br> BA4, BC4, BE4 | Impaired Lives Morbidity <br> Adjustment Factors by <br> Block <br> (MorbAdjb(im) $)$ | From the appropriate cell of Current Market Assump 5 blocks!P4, R4, <br> T4, V4, or X4 |  |

## Interblock Subsidy.xls - Rate Compression Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| B12:P41 | Premium Rate Before Rate Compression, by Cohort (PremBeforeComp ${ }_{z, \mathrm{y}}$ ) | $=" "$, $x<1$ <br>  PremBeforeComp <br> $z, y, b$ $\quad x \geq 1$ <br> PremBeforeComp ${ }_{z, y, 1}$ is from the appropriate cell of IBS-1C!J89:L118 for block 1, from the appropriate cell of IBS-2C!M89:O118 for block 2, etc. Block 1 is used for $\mathrm{y}=1,2$, and 3 ; block 2 is used for $\mathrm{y}=4,5$, and 6; etc. |  |
| Q12:Q41 | Minimum Premium Rate Before Rate Compression, by Projection Year (MinPremBeforeComp ${ }_{z}$ ) | $=\min ($ PremBeforeComp $z, y)$, where the minimum is taken over $y=1,2$, 3, ..., 15 |  |
| R12:R41 | Maximum Premium Rate Before Rate Compression, by Projection Year | $=\max ($ PremBeforeComp $z, y)$, where the maximum is taken over $\mathrm{y}=1,2$, $3, \ldots, 15$ |  |
| S12:S41 | Maximum Implied Premium Rate by Projection Year (MaxImpliedPrem ${ }_{z}$ ) | $=$ MinPremBeforeComp ${ }^{\text {a }}$ * Comp |  |
| T12:AH41 | Preliminary Adjustment Before Rebalancing by Cohort (PrelimAdj ${ }_{z, \mathrm{y}}$ ) | $\begin{aligned} & \text { MaxImpliedPrem }_{\mathrm{z}} / \text { PremBeforeComp }_{z, y}, \\ & \mathrm{z} \geq \text { CompYr and type(PremBeforeComp }_{z, \mathrm{y}} \text { ) } \neq 2 \text { and } \\ & \text { PremBeforeComp }{ }_{z, y} \geq \text { MaxImpliedPrem }_{\mathrm{z}} \end{aligned}$ | The "type" function checks to see whether AvgPremNoAge ${ }_{z, \mathrm{~b}}$ is text. This will only be true for years prior to the year of introduction for a given block. |

## Interblock Subsidy.xls - Rate Compression Assumptions

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| AI12:AI41 | Premium Adjustment Factor by Projection Year (PremAdj ${ }_{z}$ ) | $=\begin{aligned} & 1, \\ & 1.00180082504587, \\ & 1.00468398806258, \\ & 1.00553246378391, \\ & 0.996302685807441, \\ & 1.00407304480366, \\ & 1.00164974449571, \end{aligned}$ | $\begin{aligned} \mathrm{z}=1,2,3, \ldots, 17,18,19,26,27,28, & 29,30 \\ \mathrm{z} & =20 \\ \mathrm{z} & =21 \\ \mathrm{z} & =22 \\ \mathrm{z} & =23 \\ \mathrm{z} & =24 \\ \mathrm{z} & =25 \end{aligned}$ | Hardcoded values; these are meaningless starting values that will be altered when the Set Profit Difference Percentage to Zero macro is run. |
| AI43 | Maximum Premium Adjustment Factor Before Constraint | $=\max \left(\operatorname{PremAdj}_{z}\right)$, where the | maximum is taken over $\mathrm{z}=1,2,3, \ldots, 30$ |  |
| AJ7 | Flag to Constrain Premium Adjustment Factors to Within Specified Minimum and Maximum (ConstrainFlag) | $=1$ |  | Hardcoded value; value of 1 means constrain to specified minimum and maximum; value of 0 means do not constrain. |
| AJ9 | Maximum Allowed Premium Adjustment Factor (MaxPremAdj) | $=1.02$ |  | Hardcoded value |
| AJ11 | Minimum Allowed Premium Adjustment Factor (MinPremAdj) | $=0.98$ |  | Hardcoded value |

## Interblock Subsidy.xls - Rate Compression Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AJ12:AJ41 | Constrained Premium <br> Adjustment Factor by Projection Year (ConstrPremAdjz) |  |  |
| AK12:AO41 | Final Premium Adjustment <br> Factor by Block and <br> Projection Year <br> (FinalPremAdj $\mathrm{z}_{\mathrm{z}}$ ) | $=\min \left(\right.$ PrelimAdj $\left._{z, y}\right) *$ ConstrPremAdj $_{z}$, where the minimum is taken over $\mathrm{y}=1,2$, 3 for block $1 ; \mathrm{y}=4,5,6$ for block 2 ; etc. |  |
| AP12:AP41 | Aggregate Economic Gain from Current Market Model, by Projection Year <br> (CMAggEconGain ${ }_{z}$ ) | From the appropriate cell of Current Market Summary 5 blocks!DP164:DP193 |  |
| AQ12:AQ41 | Aggregate Economic Gain as a Percentage of Aggregate Premium from the Current Market Model, by Projection Year <br> (CMAggEconGain\% ${ }_{z}$ ) | $=$ AggEconGain $_{z} /$ AggPremium $_{z}$ <br> AggEconGain $_{\mathrm{z}}$ is from the appropriate cell of Current Market Summary 5 blocks!DP164:DP193 <br> AggPremium $_{\mathrm{z}}$ is from the appropriate cell of Current Market Summary 5 blocks!DB164:DB193 |  |
| AR12:AR41 | Aggregate Economic Gain from Rate Compression Model, by Projection Year (RCAggEconGain ${ }_{z}$ ) | From the appropriate cell of IBS Compression Summary!DP164:DP193 |  |

## Interblock Subsidy.xls - Rate Compression Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AS12:AS41 | Aggregate Economic Gain as a Percentage of Aggregate Premium from the Rate Compression Model, by Projection Year (RCAggEconGain\% ${ }_{z}$ ) | $=$ AggEconGain $_{z} /$ AggPremium $_{z}$ <br> AggEconGain $_{z}$ is from the appropriate cell of IBS Compression Summary!DP164:DP193 <br> AggPremium $_{z}$ is from the appropriate cell of IBS Compression Summary!DB164:DB193 |  |
| AT12:AT41 | Difference in Aggregate Economic Gain Between the Current Market and Rate Compression Models, by Projection Year | $=$ RCAggEconGain $_{\mathrm{z}}-$ CMAggEconGain $_{\text {z }}$ |  |
| AU12:AU41 | Difference in Aggregate Economic Gain as a Percentage of Aggregate Premium Between the Current Market and Rate Compression Models, by Projection Year ( $\Delta$ AggEconGain $\%_{z}$ ) | = RCAggEconGain $\%_{\mathrm{z}}-$ CMAggEconGain $^{\text {z }}$ |  |

## Interblock Subsidy.xls - Rate Compression Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AV12:AZ41 | Minimum Premium Rate Without Aging from Rate Compression Model, by Block and Projection Year (MinDurAdjPremRate ${ }_{z, \mathrm{~b}}$ ) | $=" "$, $l_{\text {z,b }}=0$ <br> $\min \left(\right.$ DurAdjPremRate $\left._{\text {z,y,b }}\right)$, $l_{\text {z,b }} \neq 0$ <br> DurAdjPremRate $e_{\mathrm{z}, \mathrm{y}, \mathrm{b}}$ is from the appropriate cell of IBS- <br> 1C!BD89:BF118 for block 1, from the appropriate cell of IBS2C!BG89:BI188 for block 2, etc. <br>  Intro $\mathrm{Yr}_{\mathrm{b}}+1$ for $\mathrm{x}=2$; and $\mathrm{y}=$ Intro $\mathrm{Yr}_{\mathrm{b}}$, Intro $\mathrm{Yr}_{\mathrm{b}}+1$, and Intro $_{\text {Yr }}+2$ for $\mathrm{x}>2$. | Formula only applies for projection years at or beyond the year of introduction of each block. |
| BA12:BE41 | Maximum Premium Rate Without Aging from Rate Compression Model, by Block and Projection Year (MaxDurAdjPremRate ${ }_{\mathrm{z}, \mathrm{b}}$ ) | $=$$="$, $l_{z, \mathrm{~b}}=0$ <br> $\quad \max \left(\right.$ DurAdjPremRate $\left._{\mathrm{z}, \mathrm{y}, \mathrm{b}}\right)$, $\mathrm{l}_{\mathrm{z}, \mathrm{b}} \neq 0$ <br> DurAdjPremRate ${ }_{\mathrm{z}, \mathrm{y}, \mathrm{b}}$ is from the appropriate cell of IBS1C!BD89:BF118 for block 1, from the appropriate cell of IBS2C!BG89:BI188 for block 2, etc. <br> The maximum is taken over $\mathrm{y}=\operatorname{Intro\mathrm {Yr}_{\mathrm {b}}\text {for}\mathrm {x}=1;\mathrm {y}=\text {Intro}\mathrm {Yr}_{\mathrm {b}}\text {and}}$ Intro $\mathrm{Yr}_{\mathrm{b}}+1$ for $\mathrm{x}=2$; and $\mathrm{y}=\operatorname{IntroYr} r_{\mathrm{b}}$, Intro $\mathrm{Yr}_{\mathrm{b}}+1$, and Intro $\mathrm{rr}_{\mathrm{b}}+2$ for $\mathrm{x}>2$. | Formula only applies for projection years at or beyond the year of introduction of each block. |
| BF12:BF41 | Minimum Premium Rate Without Aging from Rate Compression Model, by Projection Year (MinDurAdjPremRate ${ }_{z}$ ) | $=\min \left(\right.$ MinDurAdjPremRate $\left._{z, \mathrm{~b}}\right)$, where the minimum is taken over $\mathrm{b}=1$, $2,3,4$, and 5 |  |

## Interblock Subsidy.xls - Rate Compression Assumptions

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| BG12:BG41 | Maximum Premium Rate Without Aging from Rate Compression Model, by Projection Year (MaxDurAdjPremRate ${ }_{z}$ ) | $=\max \left(\right.$ MaxDurAdjPremRate $\left._{\mathrm{z}, \mathrm{b}}\right)$, where the maximum is taken over $\mathrm{b}=1$, $2,3,4$, and 5 |  |
| BH12:BH41 | Ratio of Maximum to <br> Minimum Premium Rate <br> Without Aging by <br> Projection Year <br> (MaxToMinRatioz) | $=$ MaxDurAdjPremRate $^{\text {I }} /$ MinDurAdjPremRate $_{\text {z }}$ |  |
| BI12:BI41 | Check | $\begin{array}{ccc} \hline=\text { "error", } & \text { MaxToMinRatio }_{\mathrm{z}}>\text { Comp } \\ \text { "ok", } & \text { MaxToMinRatio } & \text { Comp } \end{array}$ |  |
| BJ12:BN41 | Ratio of Maximum to Minimum Premium Rate Without Aging, Within a Block by Projection Year | $=$ MaxDurAdjPremRate $_{\text {z,b }} /$ MinDurAdjPremRate $_{\text {z,b }}$ | Formula only applies for projection years at or beyond the year of introduction of each block. |
| AP43 | Aggregate Economic Gain from the Current Market Model (CMAggEconGain) | From Current Market Summary 5 blocks!DP194 |  |

## Interblock Subsidy.xls - Rate Compression Assumptions

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| AQ43 | Aggregate Economic Gain <br> as a Percentage of <br> Aggregate Premium from <br> the Current Market Model <br> (CMAggEconGain\%) | AggEconGain is from Current Market Summary 5 blocks!DP194 <br> AggPremium is from Current Market Summary 5 blocks!DB194 |  |
| AR43 | Aggregate Economic Gain <br> from the Rate Compression <br> Model <br> (RCAggEconGain) | From IBS Compression Summary!DP194 |  |
| AS43 | Aggregate Economic Gain <br> as a Percentage of <br> Aggregate Premium from <br> the Rate Compression <br> Model <br> (RCAggEconGain\%) | AggEconGain is from IBS Compression Summary!DP194 <br> AggPremium is from IBS Compression Summary!DB194 |  |
| AT43 | Difference in Aggregate <br> Economic Gain Between the <br> Current Market and Rate <br> Compression Models | $=$ RCAggEconGain - CMAggEconGain |  |
| AU43 | Difference in Aggregate <br> Economic Gain as a <br> Percentage of Aggregate <br> Premium Between the <br> Current Market and Rate <br> Compression Models | $=$ RCAggEconGain\% - CMAggEconGain\% |  |

## Interblock Subsidy.xls - Rate Compression Assumptions

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| AP44 | Present Value of Aggregate <br> Economic Gain from the <br> Current Market Model <br> (CMPVAggEconGain) | From Current Market Summary 5 blocks!DP197 |  |
| AQ44 | Present Value of Aggregate <br> Economic Gain as a <br> Percentage of Present Value <br> of Aggregate Premium from <br> the Current Market Model <br> (CMPVAggEconGain\%) | PVAggEconGain is from Current Market Summary 5 blocks!DP197 <br> PVAggPremium is from Current Market Summary 5 blocks!DB197 |  |
| AR44 | Present Value of Aggregate <br> Economic Gain from the <br> Rate Compression Model <br> (RCPVAggEconGain) | From IBS Compression Summary!DP197 |  |
| AS44 | Present Value of Aggregate <br> Economic Gain as a <br> Percentage of Present Value <br> of Aggregate Premium from <br> the Rate Compression <br> Model <br> (RCPVAggEconGain\%) | PVAggEconGain is from IBS Compression Summary!DP197 <br> PVAggPremium is from IBS Compression Summary!DB197 |  |

## Interblock Subsidy.xls - Rate Compression Assumptions

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| AT44 | Difference in Present Value <br> of Aggregate Economic <br> Gain Between the Current <br> Market and Rate <br> Compression Models | $=$ RCPVAggEconGain - CMPVAggEconGain |  |
| AU44 | Difference in Present Value <br> of Aggregate Economic <br> Gain as a Percentage of <br> Present Value of Aggregate <br> Premium Between the <br> Current Market and Rate <br> Compression Models | $=$ RCPVAggEconGain\% - CMPVAggEconGain\% |  |

The Rate Compression Assumptions tab contains a "Set Profit Difference Percentage to Zero" macro, which is executed by clicking on the button at cell AO2. This macro first sets the value of PremAdj ${ }_{z}$ equal to 1 for every z, then successively applies the Microsoft Visual Basic GoalSeek function to each calendar year. The goal is to get $\Delta \mathrm{AggEconGain} \%_{z}=0$, and the changing cell is PremAdjz.

## Interblock Subsidy.xls - IBS Compression Summary

IBS Compression Summary is analogous to Current Market Summary 5 blocks. Please note the following differences between the two tabs:

- Throughout the tab, IBS Compression Summary pulls values from Rate Compression Assumptions, while Current Market Summary 5 blocks pulls values from Current Market Assump 5 blocks.
- Throughout the tab, IBS Compression Summary pulls values from IBS-1C, IBS-2C, etc., while Current Market Summary 5 blocks pulls values from CM-1, CM-2, etc.
- Note that in the calculation of Requested Rate Increase for New Business at cells X13:X41, IBS Compression Summary does not apply a maximum loss ratio, in contrast to the analogous calculations in Current Market Summary 5 blocks.
- IBS Compression Summary includes an array of average premium rates by block and projection year that is not included in Current Market Summary 5 blocks. This array is in cells DV164:DZ193. These premium rate values are calculated in IBS-1C, IBS-2C, etc.
- Finally, IBS Compression Summary includes a series of calculations used as checks only. These calculations are not included in Current Market Summary 5 blocks. The calculations are described below.
$\left.\begin{array}{|l|l|l|l|}\hline \text { Cells } & \text { Description } & \text { Formula } & \text { Comments } \\ \hline \text { DA201:DA230 } & \begin{array}{l}\text { Alternate Calculation of } \\ \text { Aggregate Enrollment by } \\ \text { Projection Year } \\ \left(\text { AltAggl }_{z}\right)\end{array} & =\sum_{\mathrm{y}=1}^{20}\left(\mathrm{Aggl}_{z, y(s t)}+\mathrm{Aggl}_{\mathrm{z}, \mathrm{y}(\mathrm{im})}\right)\end{array} \quad \begin{array}{l}\text { Should match Aggl } \\ \text { values in cells } \\ \text { DA164:DA193. }\end{array}\right]$


## Interblock Subsidy.xls - IBS Compression Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DB201:DB230 | Alternate Calculation of Aggregate Premium by Projection Year (AltAggPremium ${ }_{z}$ ) | $=\sum_{\mathrm{y}=1}^{20}\left(\operatorname{Aggl}_{z, \mathrm{y}(\mathrm{st})}+\operatorname{Aggl}_{z, \mathrm{y}(\mathrm{~m})}\right) * \text { AggAgeAdjPremRate }{ }_{z, \mathrm{y}} * 12$ | Should match AggPremium $_{\mathrm{z}}$ values in cells DB164:DB193. |
| DB231 | Alternate Calculation of Total Aggregate Premium | $=\sum_{z=1}^{30} \text { AltAggPremium }_{z}$ | Should match AggPremium value in cell DB194. |
| DC201:DC230 | Alternate Calculation of Aggregate Claims by Projection Year (AltAggClaims ${ }_{z}$ ) | $\begin{aligned} & =\sum_{\mathrm{i}=1}^{20} \operatorname{Aggl}_{\mathrm{z}, \mathrm{i}(\mathrm{st})} * \operatorname{AggClaims}_{\mathrm{z}, \mathrm{i}(\mathrm{st})} * 12 \\ & +\sum_{\mathrm{j}=1}^{20} \operatorname{Aggl}_{\mathrm{z}, \mathrm{j}(\mathrm{im})} * \operatorname{AggClaims}_{\mathrm{z,j}(\mathrm{im})} * 12 \end{aligned}$ | Should match AggClaims ${ }_{z}$ values in cells DC164:DC193. |
| DC231 | Alternate Calculation of Total Aggregate Claims | $=\sum_{\mathrm{z}=1}^{30} \text { AltAggClaims }_{\mathrm{z}}$ | Should match <br> AggClaims value in cell DC194. |
| DJ201:DJ230 | Alternate Calculation of Aggregate Expenses by Projection Year ( $\mathrm{AltAggExp}_{z}$ ) | $\begin{aligned} & =\sum_{i=1}^{20} \operatorname{Aggl}_{z, i(\mathrm{st})} * \operatorname{AggExp}_{z, \mathrm{i}(\mathrm{st})} * 12 \\ & +\sum_{\mathrm{j}=1}^{20} \operatorname{Aggl}_{\mathrm{z}, \mathrm{j}(\mathrm{im})} * \operatorname{AggExp}_{\mathrm{z}, \mathrm{j}(\mathrm{im})} * 12 \end{aligned}$ | Should match AggExp $_{z}$ values in cells DJ164:DJ193. |

## Interblock Subsidy.xls - IBS Compression Summary

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DJ231 | Alternate Calculation of Total Aggregate Expenses | $=\sum_{z=1}^{30} \text { AltAggExp }_{z}$ | Should match AggExp value in cell DJ194. |
| DO201:DO230 | Alternate Calculation of Aggregate Opportunity Cost of Capital by Projection Year <br> (AltAggOCC ${ }_{z}$ ) | $=-\mathrm{RBC} \% * \mathrm{OCC}^{2} * \text { AltAggPremium }_{\mathrm{z}}$ <br> RBC\% is from Global Assumptions!D83 OCC\% is from Global Assumptions!D84 | Should match $\mathrm{AggOCC}_{z}$ values in cells DO164:DO193. |
| DO231 | Alternate Calculation of Total Opportunity Cost of Capital | $=\sum_{z=1}^{30} \text { AltaggoCC }_{z}$ | Should match AggOCC value in cell DO194. |
| DP201:DP230 | Alternate Calculation of Aggregate Economic Gain by Projection Year (AltAggEconGain ${ }_{z}$ ) | $=$ AltAggPremium $_{\mathrm{z}}-$ AltAggClaims $_{\mathrm{z}}-$ AltAggExp $_{\mathrm{z}}+$ AltAggOCC $_{\mathrm{z}}$ | Should match AggEconGain $_{\text {z }}$ values in cells DP164:DP193. |
| DP231 | Alternate Calculation of Total Opportunity Cost of Capital | $=\sum_{\mathrm{z}=1}^{30} \text { AltAggEconGain }$ | Should match AggEconGain value in cell DP194. |

## Interblock Subsidy.xls - IBS-1C, IBS-2C, IBS-3C, IBS-4C, IBS-5C

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| D4 | Reference Premium (InitRefPrem) | From Global Assumptions!C24 |  |
| D5 | Initial Reference Claim Cost for Standard Lives (InitRefClaims ${ }_{\mathrm{st}}$ ) | From Global Assumptions!D49 |  |
| D6 | Initial Reference Claim Cost for Impaired Lives (InitRefClaimsim) | From Global Assumptions!D60 |  |
| B12:B41 | Base Lapse Rates for Standard Lives (Baseq $_{\text {(stt) }}$ ) | From the appropriate cell of Global Assumptions!D29:D33 |  |
| C12:C41 | Base Lapse Rates for Impaired Lives <br> ( Baseq $\left._{x(i m)}\right)$ | From Global Assumptions!C54 |  |
| D12:D41 | Duration Factor ( $\mathrm{DF}_{\mathrm{x}}$ ) | From the appropriate cell of Global Assumptions!B77:B81 |  |
| E12:E41 | Per Policy Expense Rates ( $\operatorname{Exp}_{\text {Pol(x) })}$ ) | From the appropriate cell of Global Assumptions!B70:B74 |  |

## Interblock Subsidy.xls - IBS-1C, IBS-2C, IBS-3C, IBS-4C, IBS-5C

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| F12:F41 | Percentage-of-Claims Expense Rates (Exp\%C(x)) | From the appropriate cell of Global Assumptions!C70:C74 |  |
| G12:G41 | Base Commission Rates $\left(\right.$ Comm $\left._{\text {B(x) }}\right)$ | From the appropriate cell of Global Assumptions!D70:D74 |  |
| H12:H41 | Renewal Commission Rates $\left(\operatorname{Comm}_{\mathrm{R}(\mathrm{x})}\right)$ | From the appropriate cell of Global Assumptions!E70:E74 |  |
| I12:I41 | Other Premium-Related Expense Rates <br> (Expoth\%P(x)) | From the appropriate cell of Global Assumptions!F70:F74 |  |
| J12:J41 | Premium Age Factor $\left(\mathrm{PAF}_{\mathrm{x}}\right)$ | $\begin{array}{lr} 1, & x=1 \\ \operatorname{PAF}_{x-1} *(1+\text { PremGrowthAge }), & x=2,3,4, \ldots, 30 \end{array}$ <br> PremGrowthAge is from Global Assumptions!C25 |  |
| K12:K41 | Rate of Impairment $\left(\mu_{\mathrm{x}}\right)$ | From the appropriate cell of Global Assumptions!E43:E47 |  |
| L12:L41 | Durational Rate Increase ( $\mathrm{DRI}_{\mathrm{x}}$ ) | From the appropriate cell of IBS Assump CY pooling!T19:T48 |  |

## Interblock Subsidy.xls - IBS-1C, IBS-2C, IBS-3C, IBS-4C, IBS-5C

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| O12:O41 | Reference Premium (RefPrem ${ }_{z}$ ) | $\begin{array}{rlr} =\quad \text { InitRefPrem, } & z=1 \\ & \text { RefPrem }_{z-1} *\left(1+\text { ActTrend }_{z-1}\right), & z=2,3,4, \ldots, 30 \end{array}$ |  |
| P12:P41 | Baseline Sales (BaseSales ${ }_{\text {z }}$ ) | From the appropriate cell of IBS Assump CY pooling!C19:G48 |  |
| Q12:Q41 | Standard Lives Reference Claims (RefClaims $\left._{z(\text { stt }}\right)$ | $\begin{array}{llr} \hline= & \text { InitRefClaims }_{\text {st }} * \text { MorbAdj }_{b(s t)}, & z=1 \\ & \text { RefClaims }_{z-1(\mathrm{st})} *\left(1+\text { ActTrend }_{z-1}\right), & \mathrm{z}=2,3,4, \ldots, 30 \end{array}$ <br> MorbAdjb ${ }_{\text {(st) })}$ is from the appropriate cell of IBS Assump CY pooling!O4, Q4, S4, U4, or W4 |  |
| R12:R41 | Impaired Lives Reference Claims (RefClaims $\mathrm{Z}_{\text {z(im) }}$ ) | $\begin{array}{llr} \hline= & \text { InitRefClaims }_{\text {im }} * \text { MorbAdj }_{\text {bim) }}, & z=1 \\ \text { RefClaims }_{z-1(\mathrm{im})} *\left(1+\text { ActTrend }_{z-1}\right), & \mathrm{z}=2,3,4, \ldots, 30 \end{array}$ <br> MorbAdjb ${ }_{b(i m)}$ is from the appropriate cell of IBS Assump CY pooling!P4, R4, T4, V4, or X4 |  |
| S12:S41 | Actual Trend (ActTrend ${ }_{z}$ ) | From the appropriate cell of Global Assumptions!B106:B135 |  |
| T13:T41 | Implemented Rate Increase for New Business (ImpRateIncNew ${ }_{z}$ ) | $=\left[\left(1+\text { ImpRateIncNewBeforeComp }_{z}\right) * \text { FinalPremAdj }_{z, b}\right]-1$ <br> FinalPremAdj ${ }_{z, \mathrm{~b}}$ is from the appropriate cell of Rate Compression Assumptions!AK12:AK41 | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$ |

## Interblock Subsidy.xls - IBS-1C, IBS-2C, IBS-3C, IBS-4C, IBS-5C

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| U13:U41 | Implemented Rate Increase for Renewal Business (ImpRateIncRen ${ }_{z}$ ) | $=$ ImpRateIncNew ${ }_{\text {z }}$ | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$ |
| V12:V41 | Market New Business Rate (MarketRate ${ }_{z}$ ) | $\begin{array}{rlr} = & \mathrm{P}_{1(\mathrm{pr})}, & \mathrm{z}=1 \\ & \text { MarketRate }_{\mathrm{z}-1} *\left(1+\text { ActTrend }_{z-1}\right), \end{array} \quad \mathrm{z}=2,3,4, \ldots, 30$ <br> $\mathrm{P}_{1(\mathrm{pr})}$ is from IBS Assump CY pooling!V19 |  |
| W12:W41 | Company New Business Rate (ComNewBusnRate ${ }_{z}$ ) | $=\text { ComNewBusnRateBeforeComp }_{z} * \text { FinalPremAdj }{ }_{z, b}$ <br> FinalPremAdj ${ }_{z, \mathrm{~b}}$ is from the appropriate cell of Rate Compression Assumptions!AK12:AK41 |  |
| Z13:Z41 | Implemented Rate Increase for New Business Before Rate Compression (ImpRateIncNew BeforeComp $_{z}$ ) | $=\min \left(\text { MaxRateInc, RegDamp * ReqRateIncNew }{ }_{z}\right. \text { ) }$ <br> MaxRateInc is from Global Assumptions!D100 <br> RegDamp is from the appropriate cell of Global Assumptions!D90:D99, based on the value of ReqRateIncNew ${ }_{z}$ | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$ |
| AA13:AA41 | Implemented Rate Increase for Renewal Business Before Rate Compression (ImpRateIncRen BeforeComp ${ }_{z}$ ) | $=$ ImpRateIncNewBeforeComp $_{\text {z }}$ | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$ |

## Interblock Subsidy.xls - IBS-1C, IBS-2C, IBS-3C, IBS-4C, IBS-5C

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AB12:AB41 | Market New Business Rate Before Rate Compression (MarketRateBeforeComp ${ }_{z}$ ) | $\begin{array}{rlr} \hline= & \mathrm{P}_{1(\mathrm{pr})}, & \mathrm{z}=1 \\ & \text { MarketRate }_{\mathrm{z}-1} *\left(1+\text { ActTrend }_{z-1}\right), \end{array} \quad \mathrm{z}=2,3,4, \ldots, 30$ <br> $\mathrm{P}_{1(\mathrm{pr})}$ is from Current Market Assump 5 blocks!V19 |  |
| AC12:AC41 | Company New Business Rate Before Rate Compression (ComNewBusnRate BeforeComp $_{z}$ ) | 0, $\mathrm{z}<$ IntroYr $_{\mathrm{b}}$ <br> $=$ MarketRateBeforeCompz $_{\mathrm{z}} *(1-$ Disc@Intro $)$, <br>  $\mathrm{z}=$ IntroYr $_{\mathrm{b}}$ <br>  ComNewBusnRate $_{\mathrm{z}-1} *\left(1+\right.$ ImpRateIncNewBeforeComp $\left._{\mathrm{z}}\right)$, <br> $\mathrm{z}>$ IntroYr $_{\mathrm{b}}$  <br> Intro $\mathrm{Yr}_{\mathrm{b}}$ is from the appropriate cell of Current Market Assump 5 blocks!D11:D15 <br> Disc@Intro is from Global Assumptions!D26 |  |
| AD13:AD41 | Requested Rate Increase for New Business Before Rate Compression <br> (ReqRateIncNew <br> BeforeComp ${ }_{z}$ ) | Intro $\mathrm{Yr}_{\mathrm{b}}$ is from the appropriate cell of IBS Assump DUR pooling!D11:D15 <br> MaxLR is from Current Market Assump 5 blocks!M5 | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$. |

## Interblock Subsidy.xls - IBS-1C, IBS-2C, IBS-3C, IBS-4C, IBS-5C

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AE13:AE41 | Requested Rate Increase for Renewal Business Before Rate Compression <br> (ReqRateIncRen <br> BeforeComp $_{z}$ ) | $=$ ReqRateIncNewBeforeComp ${ }_{\text {z }}$ | Formula only applies for $\mathrm{z}=2,3,4, \ldots, 30$. |
| AH12:BA41 | New Business Sales by Cohort (NewSales ${ }_{\text {r, }}$ ) | $\begin{aligned} & 0, \quad \mathrm{x} \neq 1 \\ &=\quad \max \left\{0, \text { BaseSales }_{\mathrm{z}} *[1+\text { MktPriceSens }\right. \\ &\left.*\left(\left(\text { MarketRate }_{\mathrm{z}} / \operatorname{RefPrem}_{\mathrm{z}}\right)-1\right)\right] *[1+\text { ComPriceSens } \\ &\left.\left.*\left(\left(\text { ComNewBusnRate }_{\mathrm{z}} / \text { MarketRate }_{\mathrm{z}}\right)-1\right)\right]\right\}, \quad \text { otherwise } \end{aligned}$ <br> MktPriceSens is from Global Assumptions!D14 <br> ComPriceSens is from Global Assumptions!D15 |  |
| AH42:BA42 | Total New Business Sales for Issue Year y | $=\sum_{z=1}^{30} \text { NewSales }_{z, y}$ |  |

## Interblock Subsidy.xls - IBS-1C, IBS-2C, IBS-3C, IBS-4C, IBS-5C

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| BD12:BW41 | Actual Lapse Rates for Standard Lives by Cohort ( $\mathrm{q}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}$ ) | 0 , $x \leq 1 \text { or BaseSales }{ }_{y}=0$ <br> $\max \left\{\mathrm{q}_{\min (\mathrm{st})}, \min \left[\mathrm{q}_{\max (\mathrm{st})}\right.\right.$, Baseq $_{\mathrm{x}-1(\mathrm{st})}+\left(\left(\right.\right.$ AgeAdjPremRate $_{\mathrm{z}, \mathrm{y}}$ <br> / AgeAdjPremRate ${ }_{z-1, \mathrm{y}}$ ) - 1 - ActTrend $_{\mathrm{z}}$ ) LapseAdjTrend $_{\text {st }}$ <br> * (((AgeAdjPremRate ${ }_{\mathrm{z}, \mathrm{y}} /$ AgeAdjMktNewBusnRate $\left.\left._{\mathrm{z}, \mathrm{y}}\right)-1\right)$ <br> $=\quad *$ LapseAdjMkt $\left._{\mathrm{st}}+1\right)-\left(\left(\left(\right.\right.\right.$ ComNewBusnRate $_{\mathrm{y}} /$ RefPrem $\left._{\mathrm{y}}\right)$ <br> $-1)$ * LapseAdjSale $\left.\left._{\mathrm{st}}\right]\right\}$, $\mathrm{x}=2,3$, or 4 and BaseSales $_{\mathrm{y}} \neq 0$ <br> $\max \left\{\mathrm{q}_{\min (\mathrm{st}),}, \min \left[\mathrm{q}_{\max (\mathrm{st})}\right.\right.$, Baseq $_{\mathrm{x}-1(\mathrm{st})}+\left(\left(\right.\right.$ AgeAdjPremRate $_{\mathrm{z}, \mathrm{y}}$ <br> / AgeAdjPremRate ${ }_{z-1, \mathrm{y}}$ ) - 1 - ActTrend $_{\mathrm{z}}$ ) LapseAdjTrend $_{\text {st }}$ <br> * (((AgeAdjPremRate $\mathrm{z}_{\mathrm{z}, \mathrm{y}}$ / AgeAdjMktNewBusnRate $\left.\mathrm{z}_{\mathrm{z}, \mathrm{y}}\right)$ - 1) <br> * LapseAdjMkt $\left.\left.\left._{\text {st }}+1\right)\right]\right\}$, <br> $\mathrm{q}_{\text {min(st) }}$ is from Global Assumptions!D40 <br> $\mathrm{q}_{\max (\mathrm{st})}$ is from Global Assumptions!D39 <br> LapseAdjTrend ${ }_{\text {st }}$ is from Global Assumptions!D36 <br> LapseAdjMkt $_{\text {st }}$ is from Global Assumptions!D37 <br> LapseAdjSale $_{\text {st }}$ is from Global Assumptions!D38 |  |
| BZ12:CS41 | Newly Impaired Lives by Cohort (NewImpLives $_{\text {z,y }}$ ) | $\begin{array}{lll} =0, & x \leq 1 \\ \mathrm{l}_{\mathrm{z}-1, \mathrm{y}(\mathrm{st})} * \mu_{\mathrm{x}-1} *\left(1-\mathrm{q}_{\mathrm{z}, \mathrm{y}(\mathrm{~m})}\right), & \mathrm{x}>1 \end{array}$ |  |
| BZ42:CS42 | Total Number of Newly Impaired Lives for Issue Year y | $=\sum_{\mathrm{z}=1}^{30} \text { NewImpLives }_{\mathrm{z}, \mathrm{y}}$ |  |

## Interblock Subsidy.xls - IBS-1C, IBS-2C, IBS-3C, IBS-4C, IBS-5C

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AH51:BA80 | Enrollment of Standard Lives by Cohort $\left(l_{2, y(s t)}\right)$ | $=\begin{array}{ll} 0, & x<1 \\ \text { NewSales }_{z, \mathrm{y}}, & \mathrm{x}=1 \\ \text { NewSales }_{\mathrm{z}, \mathrm{y}}+\mathrm{l}_{\mathrm{z}-1, \mathrm{y}(\mathrm{st})} *\left(1-\mu_{\mathrm{x}-1}\right) *\left(1-\mathrm{q}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}\right), & \mathrm{x}>1 \end{array}$ |  |
| AH81:BA81 | Total Enrollment of Standard Lives by Issue Year | $=\sum_{z=1}^{30} l_{z, y(s t)}$ |  |
| BD51:BW80 | Actual Lapse Rates for Impaired Lives by Cohort ( $\mathrm{q}_{z, y(\mathrm{im})}$ ) |  |  |
| BZ51:CS80 | Actual Combined Lapse Rates by Cohort $\left(\mathrm{q}_{\mathrm{z}, \mathrm{y}}\right)$ | $\begin{array}{lll} \hline=\quad 0, & l_{z, y(\mathrm{st})}+l_{z, \mathrm{y}(\mathrm{im})}=0 \\ & {\left[\left(\mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \mathrm{q}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}\right)+\left(\mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{im})} * \mathrm{q}_{\mathrm{z}, \mathrm{y}(\mathrm{~m})}\right)\right] /\left(\mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}+\mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{im})}\right),} & \text { otherwise } \end{array}$ |  |

## Interblock Subsidy.xls - IBS-1C, IBS-2C, IBS-3C, IBS-4C, IBS-5C

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| J89:AC118 | Premium Rates Before Age <br> Adjustment Before Rate Compression, by Cohort <br> (DurAdjPremRate <br> BeforeComp ${ }_{z, y}$ ) | $\begin{aligned} & 0, \\ =\quad & \text { ComNewBusnRateBeforeComp }_{z}, \\ & \text { DurAdjPremRate }_{\mathrm{z}-1, \mathrm{y}} *\left(1+\text { ImpRateIncRenBeforeComp }_{\mathrm{z}}\right) \\ & *\left(1+\text { DRI }_{\mathrm{x}}\right), \end{aligned}$ | $\begin{aligned} & x<1 \\ & x=1 \\ & x>1 \end{aligned}$ |  |
| AH89:BA118 | Enrollment of Impaired Lives by Cohort $\left(\mathrm{l}_{z, y(\mathrm{im})}\right)$ | $\begin{aligned} = & 0, \\ & \text { NewImpLives }_{z, y}+\left[\mathrm{l}_{\mathrm{z}-1, \mathrm{y}(\mathrm{~m})} *\left(1-\mathrm{q}_{\mathrm{z}, \mathrm{y}(\mathrm{~m})}\right)\right], \end{aligned}$ | $\begin{aligned} & \mathrm{x} \leq 1 \\ & \mathrm{x}>1 \end{aligned}$ |  |
| AH119:BA119 | Total Enrollment of Impaired Lives by Issue Year | $=\sum_{\mathrm{z}=1}^{30} l_{\mathrm{z}, \mathrm{y}(\mathrm{~m})}$ |  |  |
| BD89:BW118 | Premium Rates Before Age <br> Adjustment by Cohort <br> (DurAdjPremRate ${ }_{2, y}$ ) | $=\begin{aligned} & \text { 0, } \\ & \text { ComNewBusnRate }_{\mathrm{z}}, \\ & \\ & \text { DurAdjPremRate }_{\mathrm{z}-1, \mathrm{y}} *\left(1+\mathrm{ImpRateIncRen}_{\mathrm{z}}\right) *\left(1+\text { DRI }_{\mathrm{x}}\right), \end{aligned}$ | $\begin{aligned} & x<1 \\ & x=1 \\ & x>1 \end{aligned}$ |  |
| BZ89:CS118 | Premium Rates After Age Adjustment by Cohort (AgeAdjPremRate ${ }_{\text {e, }}$ ) | $=$ DurAdjPremRate $_{\text {z,y }} *$ PAF $_{\text {x }}$ |  |  |

## Interblock Subsidy.xls - IBS-1C, IBS-2C, IBS-3C, IBS-4C, IBS-5C

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AH126:BA155 | Age-Adjusted Market-Level New Business Premium Rates by Cohort <br> (AgeAdjMktNew <br> BusnRate $_{z, y}$ ) | $\begin{array}{rlr} = & 0, & \mathrm{x}<1 \\ & \text { MarketRate }_{\mathrm{Z}} * \text { PAF }_{\mathrm{x}}, & \text { otherwise } \end{array}$ |  |
| BD126:BW155 | Standard Lives Claim Levels by Cohort ( $\mathrm{C}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}$ ) | MorbAdj ${ }_{s t}$ is from Global Assumptions!D51 <br> AgingTrend is from Global Assumptions!C22 |  |
| BZ126:CS155 | Impaired Lives Claim Levels by Cohort $\left(\mathrm{C}_{\mathrm{z}, \mathrm{y}(\mathrm{im})}\right)$ | $=\begin{array}{ll} 0, & x<1 \\ \text { RefClaims }_{z(i m)}, & x=1 \\ \mathrm{C}_{\mathrm{z}-1, \mathrm{y}(\mathrm{im})} *\left(1+\text { ActTrend }_{z-1}\right) *(1+\text { AgingTrend }), & \mathrm{x}>1 \end{array}$ <br> AgingTrend is from Global Assumptions!C22 |  |

## Interblock Subsidy.xls - IBS-1C, IBS-2C, IBS-3C, IBS-4C, IBS-5C

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| AH164:BA193 | Standard Lives Expense Levels by Cohort $\left(\operatorname{Exp}_{z, y(s t)}\right)$ | Inflation is from Global Assumptions!B64 |  |
| BD164:BW193 | Impaired Lives Expense Levels by Cohort $\left(\operatorname{Exp}_{z, y(i m)}\right)$ | Inflation is from Global Assumptions!B64 |  |
| BZ164:CS193 | Average Expense Levels by Cohort $\left(\operatorname{Exp}_{z, y}\right)$ | $\begin{aligned} & 0, \quad l_{z, y(s t)}+l_{z, y(\mathrm{im})}=0 \\ & {\left[\left(l_{z, y(s t)} * \operatorname{Exp}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}\right)+\left(\mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{~m})} * \operatorname{Exp}_{\mathrm{z}, \mathrm{y}(\mathrm{im})}\right)\right] /\left(\mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{st})}+\mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{~m})}\right),} \end{aligned}$ <br> otherwise |  |

## Interblock Subsidy.xls - IBS-1C, IBS-2C, IBS-3C, IBS-4C, IBS-5C

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| CV164:CV193 | Standard Lives Enrollment by Projection Year $\left(l_{Z(s t)}\right)$ | $=\sum_{\mathrm{y}=1}^{20} l_{\mathrm{z}, \mathrm{y}(\mathrm{st})}$ |  |  |
| CV194 | Total Standard Lives Exposure | $=\sum_{z=1}^{30} l_{z(s t)}$ |  | "Total" refers to the sum over all 30 projection years. |
| CW164:CW193 | Standard Lives Premium by Projection Year $\left(\mathrm{P}_{\mathrm{z}(\mathrm{st})}\right)$ | $=\sum_{\mathrm{y}=1}^{20} \mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \text { AgeAdjPremRate }_{\mathrm{z}, \mathrm{y}} * 12$ |  |  |
| CW194 | Total Standard Lives Premium $\left(\mathrm{P}_{\mathrm{st}}\right)$ | $=\sum_{z=1}^{30} \mathrm{P}_{z(\mathrm{st})}$ |  |  |
| CX164:CX193 | Standard Lives Claims by Projection Year ( $\mathrm{C}_{\mathrm{z}(\mathrm{stt})}$ ) | $=\sum_{\mathrm{y}=1}^{20} \mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \mathrm{C}_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * 12$ |  |  |
| CX194 | Total Standard Lives Claims ( $\mathrm{C}_{\mathrm{st}}$ ) | $=\sum_{\mathrm{z}=1}^{30} \mathrm{C}_{\mathrm{z}(\mathrm{st})}$ |  |  |
| CY164:CY193 | Standard Lives Loss Ratio by Projection Year | $\begin{array}{ll} =\quad 0, \\ C_{z(s t)} / P_{z(s t)}, \end{array}$ | $\begin{aligned} & \mathrm{P}_{\mathrm{z}(\mathrm{st})}=0 \\ & \mathrm{P}_{\mathrm{z}(\mathrm{st})} \neq 0 \end{aligned}$ |  |

## Interblock Subsidy.xls - IBS-1C, IBS-2C, IBS-3C, IBS-4C, IBS-5C

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| CY194 | Standard Lives Loss Ratio | $=\mathrm{C}_{\text {st }} / \mathrm{P}_{\text {st }}$ |  |
| DB164:DB193 | Impaired Lives Enrollment by Projection Year $\left(l_{z(i m)}\right)$ | $=\sum_{\mathrm{y}=1}^{20} l_{\mathrm{z}, \mathrm{y}(\mathrm{im})}$ |  |
| DB194 | Total Impaired Lives Exposure | $=\sum_{\mathrm{z}=1}^{30} \mathrm{l}_{\mathrm{z}(\mathrm{im})}$ |  |
| DC164:DC193 | Impaired Lives Premium by Projection Year $\left(\mathrm{P}_{\mathrm{z}(\mathrm{im})}\right)$ | $=\sum_{\mathrm{y}=1}^{20} \mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{im})} * \text { AgeAdjPremRate }_{\mathrm{z}, \mathrm{y}} * 12$ |  |
| DC194 | Total Impaired Lives Premium $\left(\mathrm{P}_{\mathrm{im}}\right)$ | $=\sum_{\mathrm{z}=1}^{30} \mathrm{P}_{\mathrm{z}(\mathrm{im})}$ |  |
| DD164:DD193 | Impaired Lives Claims by Projection Year $\left(\mathrm{C}_{z(\mathrm{im})}\right)$ | $=\sum_{\mathrm{y}=1}^{20} \mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{im})} * \mathrm{C}_{\mathrm{z}, \mathrm{y}(\mathrm{im})} * 12$ |  |
| DD194 | Total Impaired Lives Claims ( $\mathrm{C}_{\mathrm{im}}$ ) | $=\sum_{z=1}^{30} C_{z(i m)}$ |  |

## Interblock Subsidy.xls - IBS-1C, IBS-2C, IBS-3C, IBS-4C, IBS-5C

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| DE165:DE193 | Impaired Lives Loss Ratio by Projection Year | $\begin{array}{ll} = & 0, \\ & C_{z(i m)} / P_{z(i m)}, \end{array}$ | $\begin{aligned} & \mathrm{P}_{\mathrm{z}(\mathrm{im})}=0 \\ & \mathrm{P}_{\mathrm{z}(\mathrm{im})} \neq 0 \end{aligned}$ |  |
| DE194 | Impaired Lives Loss Ratio | $=\mathrm{C}_{\mathrm{im}} / \mathrm{P}_{\mathrm{im}}$ |  |  |
| DM159 | Trend Scenario | From Global Assumptions!G102 |  |  |
| DQ159 | Pooling Year | From IBS Assump CY pooling!E3 |  | Not used |
| DV159 | Year that Rate Compression Begins | From Rate Compression Assumptions!AM3 |  |  |
| DG164:DG193 | Combined Enrollment by Projection Year <br> ( $\mathrm{l}_{\mathrm{z}}$ ) | $=\mathrm{l}_{\text {z(st) }}+\mathrm{l}_{\text {z(im) }}$ |  | "Combined" refers to the combination of standard and impaired. |
| DG194 | Total Combined Exposure (l) | $=\sum_{\mathrm{z}=1}^{30} \mathrm{l}_{\mathrm{z}}$ |  |  |
| DH164:DH193 | Combined Premium by Projection Year $\left(\mathrm{P}_{\mathrm{z}}\right)$ | $=\mathrm{P}_{\mathrm{z}(\mathrm{st})}+\mathrm{P}_{\mathrm{z}(\mathrm{im})}$ |  |  |
| DH194 | Total Combined Premium (P) | $=\sum_{z=1}^{30} \mathrm{P}_{\mathrm{z}}$ |  |  |

## Interblock Subsidy.xls - IBS-1C, IBS-2C, IBS-3C, IBS-4C, IBS-5C

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DI164:DI193 | Total Combined Premium PMPM | $\begin{array}{ll} =0, & l_{z}=0 \\ \mathrm{P}_{\mathrm{z}} / \mathrm{l}_{\mathrm{z}} / 12, & \mathrm{l}_{\mathrm{z}} \neq 0 \end{array}$ |  |
| DJ164:DJ193 | Combined Claims by Projection Year $\left(\mathrm{C}_{\mathrm{z}}\right)$ | $=\mathrm{C}_{\mathrm{z}(\mathrm{st})}+\mathrm{C}_{\mathrm{z} \text { (im) }}$ |  |
| DJ194 | Total Combined Claims (C) | $=\sum_{z=1}^{30} C_{z}$ |  |
| DK164:DK193 | Combined Claims PMPM by Projection Year | $\begin{array}{lll} \hline= & 0, & l_{z}=0 \\ C_{z} / l_{z} / 12, & l_{z} \neq 0 \end{array}$ |  |
| DK194 | Total Combined Claims PMPM | $\begin{array}{ll} =0, & l=0 \\ C / l / 12, & l \neq 0 \end{array}$ |  |
| DL164:DL193 | Combined Loss Ratio by Projection Year <br> (ActualLR ${ }_{z}$ ) | $=$0, $\mathrm{P}_{\mathrm{z}}=0$ <br> $\mathrm{C}_{\mathrm{z}} / \mathrm{P}_{\mathrm{z}}$, $\mathrm{P}_{\mathrm{z}} \neq 0$ |  |
| DL194 | Total Combined Loss Ratio | $=0$, $P=0$ <br> $C / P$, $P \neq 0$ |  |
| DM164:DM193 | Combined Expected Loss Ratio by Projection Year (ExpectedLR ${ }_{z}$ ) | From the appropriate cell of CM-b_TLR!U19:U48, where b is the block number |  |

## Interblock Subsidy.xls - IBS-1C, IBS-2C, IBS-3C, IBS-4C, IBS-5C

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| DN164:DN193 | Actual-to-Expected Combined Loss Ratio by Projection Year | $\begin{aligned} = & 0, \\ & \text { ActualLR }_{\mathrm{z}} / \text { ExpectedLR }_{\mathrm{z}}, \end{aligned}$ | $\begin{gathered} \mathrm{P}_{\mathrm{z}}=0 \\ \mathrm{P}_{\mathrm{z}} \neq 0 \end{gathered}$ |  |
| DO164:DO193 | Rolling Two-Year Combined Loss Ratio by Projection Year | $\begin{aligned} \hline= & \mathrm{C}_{\mathrm{z}} / \mathrm{P}_{\mathrm{z}}, \\ & \left(\mathrm{C}_{\mathrm{z}-1}+\mathrm{C}_{\mathrm{z}}\right) /\left(\mathrm{P}_{\mathrm{z}-1}+\mathrm{P}_{\mathrm{z}}\right), \end{aligned}$ | $\begin{array}{r} z=1 \\ z=2,3,4, \ldots, 30 \end{array}$ | Produces \#DIV/0! errors for projection years prior to the introduction year of the block. |
| DP164:DP193 | Combined Premium Less Claims by Projection Year (PminusC ${ }_{z}$ ) | $=\mathrm{P}_{\mathrm{z}}-\mathrm{C}_{\mathrm{z}}$ |  |  |
| DP194 | Total Combined Premium Less Claims | $=\mathrm{P}-\mathrm{C}$ |  |  |
| DQ164:DQ193 | Combined Expenses by Projection Year $\left(\operatorname{Exp}_{z}\right)$ | $=12 *\left[\sum_{\mathrm{y}=1}^{20}\left(l_{\mathrm{z}, \mathrm{y}(\mathrm{st})} * \operatorname{Exp}_{z, \mathrm{y}(\mathrm{st})}\right)+\sum_{\mathrm{y}=1}^{20}\left(\mathrm{l}_{\mathrm{z}, \mathrm{y}(\mathrm{im})} * \operatorname{Exp}_{\mathrm{z}, \mathrm{y}(\mathrm{im})}\right)\right]$ |  |  |
| DQ194 | Total Combined Expenses (Exp) | $=\sum_{\mathrm{z}=1}^{30} \operatorname{Exp}_{\mathrm{z}}$ |  |  |
| DR164:DR193 | Combined Expense Ratio by Projection Year | $\begin{aligned} = & 0, \\ & \operatorname{Exp}_{z} / P_{z}, \end{aligned}$ | $\begin{gathered} \mathrm{P}_{\mathrm{z}}=0 \\ \mathrm{P}_{\mathrm{z}} \neq 0 \end{gathered}$ |  |

## Interblock Subsidy.xls - IBS-1C, IBS-2C, IBS-3C, IBS-4C, IBS-5C

| Cells | Description | Formula |  | Comments |
| :---: | :---: | :---: | :---: | :---: |
| DR194 | Total Combined Expense Ratio | $\begin{aligned} &=\quad 0, \\ & \operatorname{Exp} / P, \end{aligned}$ | $\begin{aligned} & \mathrm{P}=0 \\ & \mathrm{P} \neq 0 \end{aligned}$ |  |
| DS164:DS193 | Combined Gain by Projection Year (Gain ${ }^{\text {Z }}$ ) | $=\mathrm{P}_{\mathrm{z}}-\mathrm{C}_{\mathrm{z}}-\operatorname{Exp}_{\mathrm{z}}$ |  |  |
| DS194 | Total Combined Gain (Gain) | $=\sum_{z=1}^{30} \operatorname{Gain}_{z}$ |  |  |
| DT164:DT193 | Combined Gain as a <br> Percentage of Combined Premium by Projection Year | $\begin{aligned} & =0, \\ & \text { Gain }_{\mathrm{z}} / \mathrm{P}_{\mathrm{z}}, \end{aligned}$ | $\begin{aligned} & \mathrm{P}_{\mathrm{z}}=0 \\ & \mathrm{P}_{\mathrm{z}} \neq 0 \end{aligned}$ |  |
| DT194 | Total Combined Gain as a Percentage of Combined Premium | $\begin{aligned} = & 0, \\ & \text { Gain } / P, \end{aligned}$ | $\begin{aligned} & \mathrm{P}=0 \\ & \mathrm{P} \neq 0 \end{aligned}$ |  |
| DU164:DU193 | Risk-Based Capital by Projection Year $\left(\mathrm{RBC}_{\mathrm{z}}\right)$ | $=\mathrm{P}_{\mathrm{z}} * \mathrm{RBC} \%$ <br> RBC\% is from Global Assumptions!D83 |  | Uses a predefined percentage of premium as a proxy for riskbased capital requirement. |
| DV164:DV193 | Opportunity Cost of Capital by Projection Year $\left(\mathrm{OCC}_{\mathrm{z}}\right)$ | $=-\mathrm{RBC}_{\mathrm{z}} * \mathrm{OCC} \%$ <br> OCC\% is from Global Assumptions!D84 |  |  |

## Interblock Subsidy.xls - IBS-1C, IBS-2C, IBS-3C, IBS-4C, IBS-5C

| Cells | Description | Formula |  |
| :--- | :--- | :--- | :--- |
| DV194 | Total Opportunity Cost of <br> Capital | $=\sum_{\mathrm{z}=1}^{30} \mathrm{OCC}_{\mathrm{z}}$ | Comments |
| DW164:DW193 | Economic Gain by <br> Projection Year <br> $\left(\right.$ EconGain $\left._{\mathrm{z}}\right)$ | $=$ Gain $_{\mathrm{z}}+$ OCC $_{\mathrm{z}}$ |  |
| DW194 | Total Economic Gain | $=\sum_{\mathrm{z}=1}^{30}$ EconGain $_{\mathrm{z}}$ | These are just copies of <br> values calculated <br> elsewhere in this tab. <br> They are copied here <br> for convenience only. |
| DX164:DX193 | Market New Business Rate | $=$ MarketRate |  |
| $z$ |  |  |  |

## Interblock Subsidy.xls - IBS-1C, IBS-2C, IBS-3C, IBS-4C, IBS-5C

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DZ194 | Average Rate Increase | Intro $\mathrm{Yr}_{\mathrm{b}}$ is from the appropriate cell of IBS Assump CY pooling!D11:D15 |  |
| DZ195 | Minimum Rate Increase | $=\min \left(\right.$ IncRateIncNew ${ }_{z}$ ), where the minimum is taken over $\mathrm{z}=$ Intro $_{\text {Yr }}+1$, Intro $\mathrm{Yr}_{\mathrm{b}}+2$, Intro $\mathrm{Yr}_{\mathrm{b}}+3, \ldots, 30$ <br> Intro $\mathrm{Yr}_{\mathrm{b}}$ is from the appropriate cell of IBS Assump CY pooling!D11:D15 |  |
| DZ196 | Maximum Rate Increase | $=\max \left(\right.$ IncRateIncNew ${ }_{z}$ ), where the maximum is taken over $\mathrm{z}=$ Intro $\mathrm{Yr}_{\mathrm{b}}+1$, Intro $\mathrm{Yr}_{\mathrm{b}}+2$, Intro $\mathrm{Yr}_{\mathrm{b}}+3, \ldots, 30$ <br> Intro $\mathrm{Yr}_{\mathrm{b}}$ is from the appropriate cell of IBS Assump CY pooling!D11:D15 |  |
| EA164:EA193 | Implemented Rate Increase for Renewal Business | $=$ ImpRateIncRen $_{\text {z }}$ |  |
| EB164:EB183 | New Business Sales | $=$ NewSales $_{\text {z,z }}$ | Formula applies only for $\mathrm{z}=1,2,3, \ldots, 20$. |

## Interblock Subsidy.xls - IBS-1C, IBS-2C, IBS-3C, IBS-4C, IBS-5C

| Cells | Description | Formula | Comments |
| :---: | :---: | :---: | :---: |
| DH197 | Present Value of Combined Premium (PVPremium) | $=\mathrm{NPV}_{\text {int }}\left(\mathrm{P}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ | All present values in this section are taken over all 30 projection years, and int is from Global Assumptions!B63. |
| DJ197 | Present Value of Combined Claims (PVClaims) | $=\mathrm{NPV}_{\mathrm{int}}\left(\mathrm{C}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DP197 | Present Value of Combined Premium Less Combined Claims (PVPminusC) | $=\mathrm{NPV}_{\text {int }}\left(\text { PminusC }_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DQ197 | Present Value of Combined <br> Expenses <br> (PVExp) | $=N P V_{\text {int }}\left(\operatorname{Exp}_{z}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DS197 | Present Value of Combined Gain (PVGain) | $=N P V_{\text {int }}\left(\mathrm{Gain}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |
| DV197 | Present Value of Opportunity Cost of Capital (PVOCC) | $=\mathrm{NPV}_{\text {int }}\left(\mathrm{OCC}_{\mathrm{z}}\right) * \sqrt{1+\mathrm{int}}$ |  |

## Interblock Subsidy.xls - IBS-1C, IBS-2C, IBS-3C, IBS-4C, IBS-5C

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| DW197 | Present Value of Economic <br> Gain <br> (PVEconGain) | $=$ NPV $_{\text {int }}\left(\right.$ EconGain $\left._{z}\right) * \sqrt{1+\text { int }}$ |  |
| DH198 | Present Value of Combined <br> Premium as a Percentage of <br> Present Value of Combined <br> Premium | $=$ PVPremium / PVPremium | Identically equal to <br> $100.0 \%$. |
| DJ198 | Present Value of Combined <br> Claims as a Percentage of <br> Present Value of Combined <br> Premium | $=$ PVClaims / PVPremium |  |
| DP198 | Present Value of Combined <br> Premium Less Combined <br> Claims as a Percentage of <br> Present Value of Combined <br> Premium | $=$ PVPminusC / PVPremium |  |
| DQ198 | Present Value of Combined <br> Expenses as a Percentage of <br> Present Value of Combined <br> Premium | $=$ PVExp / PVPremium |  |
| DS198 | Present Value of Combined <br> Gain as a Percentage of <br> Present Value of Combined <br> Premium | $=$ PVGain / PVPremium |  |

## Interblock Subsidy.xls - IBS-1C, IBS-2C, IBS-3C, IBS-4C, IBS-5C

| Cells | Description | Formula | Comments |
| :--- | :--- | :--- | :--- |
| DV198 | Present Value of <br> Opportunity Cost of Capital <br> as a Percentage of Present <br> Value of Combined <br> Premium | $=$ PVOCC / PVPremium |  |
| DW198 | Present Value of Economic <br> Gain as a Percentage of <br> Present Value of Combined <br> Premium | $=$ PVEconGain / PVPremium |  |

## Interblock Subsidy.xls - Test Comparisons and To Do_ Changes

Interblock Subsidy.xls contains two additional tabs, "Test Comparisons" and "To Do_ Changes ", which will not be documented here since they are not part of the model per se. The former contains extensive calculations that the model developers used for their own reference when designing the spreadsheet. The latter contains a list of changes that have been or need to be made.

## Exhibits

The final component of the model is a spreadsheet entitled Exhibits.xls, which compiles results from each of the models and displays selected results graphically. Most of the values are calculated in other spreadsheets and thus are reflected in the documentation above. There are some parameters calculated directly in Exhibits.xls, however these are straightforward and will not be documented here.

